Login

Marlies
GP: 55 | W: 33 | L: 16 | OTL: 6 | P: 72
GF: 225 | GA: 175 | PP%: 25.00% | PK%: 78.95%
GM : Eug Sorokin | Morale : 63 | Team Overall : 62
Next Games #609 vs Aces
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Marlies
33-16-6, 72pts
4
FINAL
0 Canucks
31-21-4, 66pts
Team Stats
SOL1StreakW1
15-9-3Home Record16-10-2
18-7-3Home Record15-11-2
4-4-2Last 10 Games7-3-0
4.09Goals Per Game3.29
3.18Goals Against Per Game3.04
25.00%Power Play Percentage26.32%
78.95%Penalty Kill Percentage79.09%
Marlies
33-16-6, 72pts
2
FINAL
3 Punishers
33-17-5, 71pts
Team Stats
SOL1StreakSOW1
15-9-3Home Record18-8-2
18-7-3Home Record15-9-3
4-4-2Last 10 Games7-3-0
4.09Goals Per Game4.11
3.18Goals Against Per Game3.62
25.00%Power Play Percentage21.71%
78.95%Penalty Kill Percentage84.62%
Aces
33-16-4, 70pts
Day 116
Marlies
33-16-6, 72pts
Team Stats
W3StreakSOL1
18-10-0Home Record15-9-3
15-6-4Away Record18-7-3
9-1-0Last 10 Games4-4-2
3.66Goals Per Game4.09
3.19Goals Against Per Game4.09
20.17%Power Play Percentage25.00%
83.54%Penalty Kill Percentage78.95%
Marlies
33-16-6, 72pts
Day 118
Barracuda
26-24-5, 57pts
Team Stats
SOL1StreakW1
15-9-3Home Record14-11-3
18-7-3Away Record12-13-2
4-4-2Last 10 Games4-4-2
4.09Goals Per Game4.93
3.18Goals Against Per Game4.93
25.00%Power Play Percentage23.33%
78.95%Penalty Kill Percentage71.01%
Firebirds
22-27-6, 50pts
Day 119
Marlies
33-16-6, 72pts
Team Stats
OTL1StreakSOL1
11-15-1Home Record15-9-3
11-12-5Away Record18-7-3
4-5-1Last 10 Games4-4-2
4.84Goals Per Game4.09
4.95Goals Against Per Game4.09
18.05%Power Play Percentage25.00%
77.85%Penalty Kill Percentage78.95%
Team Leaders
Mark JankowskiGoals
Mark Jankowski
29
Jesper FastAssists
Jesper Fast
40
Mark JankowskiPoints
Mark Jankowski
65
Philip TomasinoPlus/Minus
Philip Tomasino
29
Martin JonesWins
Martin Jones
31
Martin JonesSave Percentage
Martin Jones
0.9

Team Stats
Goals For
225
4.09 GFG
Shots For
1861
33.84 Avg
Power Play Percentage
25.0%
32 GF
Offensive Zone Start
40.7%
Goals Against
175
3.18 GAA
Shots Against
1728
31.42 Avg
Penalty Kill Percentage
78.9%%
28 GA
Defensive Zone Start
38.9%
Team Info

General ManagerEug Sorokin
CoachSheldon Keefe
DivisionAtlantic
ConferenceEastern Conference
CaptainMarcus Johansson
Assistant #1Troy Stecher
Assistant #2Jesper Fast


Arena Info

Capacity3,000
Attendance0
Season Tickets300


Roster Info

Pro Team27
Farm Team19
Contract Limit46 / 50
Prospects5


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Mark JankowskiXX100.00555787697769597767687069517474082660303500,000$
2Tye KartyeX100.00855986717370877960636463506162081650231500,000$
3Jesper Fast (A)X100.00705689686871847550685769507775081650332500,000$
4Logan Stankoven (R)XX100.00635491715973577954697161535963064640213500,000$
5Hudson FaschingX100.00685595697570657550665661507271079630291500,000$
6Jesper BoqvistXX100.00735590696568667650646263536464079630263500,000$
7Philip TomasinoXX100.00565588736571637350716761516064080630231500,000$
8Mattias JanmarkXX100.00666282667470826655605071507575074620323500,000$
9Peyton KrebsXX100.00726076696771907366645163506263079620241500,000$
10Vasily PodkolzinX100.00775878626861546750545054505859020560231500,000$
11Troy Stecher (A)X100.00726071626473736750605476557576080650301500,000$
12Jackson LaCombeX100.00665983667575856950655271556265080650242500,000$
13Gustav LindstromX100.00756074627068676750625272566668080640261500,000$
14Calen AddisonX100.00635878716171856750645161556364078620244500,000$
15Pierre-Olivier JosephX100.00685786636668706750615069556566030620252500,000$
16John LudvigX100.00787381607760606150525467566365021600241500,000$
Scratches
1Ryan StromeXX100.006765667868789075637263595074730196703131,750,000$
2Marcus Johansson (C)XX100.00645785727378897450676360537975027660341500,000$
3Phillip Di GiuseppeX100.00776285696970697950625868507572059640312500,000$
4Linus KarlssonX100.00503589576350515050505050506060020510254750,000$
5Pierrick DubeX100.00504167575950505050505050505859020500241500,000$
6Zach BogosianX100.007864716283728066506050745580780206703411,000,000$
7Marc Del GaizoX100.00595788576652545350445054556265020530251500,000$
8Philip BrobergX100.00505099507750535050505053556063020520233500,000$
TEAM AVERAGE100.0067578366696770685361566352676705462
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Marc-Andre Fleury100.0076807871727974727364728888073730401500,000$
2Martin Jones100.0074717277727871717266508181061720351500,000$
Scratches
1Louis Domingue100.0059606377545150505150507474079570321500,000$
TEAM AVERAGE100.007070717566696564656057818107167
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Sheldon Keefe7585859075751CAN447500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mark JankowskiMarlies (TOR)C/LW552936652620241532256116312.89%9115420.994711279701141014259.88%152300011.1313000573
2Jesper FastMarlies (TOR)RW55224062248071831615011513.66%7110920.18371023101000024045.35%8600001.1203000317
3Tye KartyeMarlies (TOR)LW5521295029260139801816112311.60%9112020.3745921990003753350.63%7900000.8903000452
4Philip TomasinoMarlies (TOR)LW/RW55222648290017551495011014.77%1087515.911234281122274140.30%6700001.1000000433
5Logan StankovenMarlies (TOR)C/RW52252247110038931965012412.76%6102219.6741519911232363148.22%39400010.9200000134
6Troy StecherMarlies (TOR)D55102636174401184566253915.15%72120821.984152490000097010%000000.6000000222
7Jesper BoqvistMarlies (TOR)C/LW5017173442405284122397813.93%981416.292248620000204147.21%100200010.8300000210
8Peyton KrebsMarlies (TOR)C/LW54112132132208611511220609.82%883015.37000010003471158.16%95600000.7700000231
9Phillip Di GiuseppeMarlies (TOR)LW44131932-62359555138351109.42%1085819.5213410571013562053.13%6400100.7500001322
10Gustav LindstromMarlies (TOR)D5532831224010150325920295.08%72112820.5105520730110102200%000000.5500101334
11Hudson FaschingMarlies (TOR)RW5517143121603636119176814.29%672813.24011230003312148.00%5000000.8500000332
12Calen AddisonMarlies (TOR)D54325281022065423613248.33%49100218.562571455000063000%000000.5600000204
13Jackson LaCombeMarlies (TOR)D55522272321562566910367.25%74116021.1014531951011104100%000000.4700000112
14Marcus JohanssonMarlies (TOR)LW/RW2151015-44029245725458.77%241119.60134946000160043.75%1600000.7300000002
15Ryan StromeMarlies (TOR)C/RW96511-160261826121623.08%018220.25112322000051048.86%21900001.2100000111
16Mattias JanmarkMarlies (TOR)LW/RW506410-220161845102913.33%113336.67101240000461066.67%2700000.6000000000
17Pierre-Olivier JosephMarlies (TOR)D331910-71803819198165.26%4455416.800000401114100100.00%100000.3600000000
18John LudvigMarlies (TOR)D170332401927220%1018711.010000200005000%000000.3200000000
19Vasily PodkolzinMarlies (TOR)RW10022160913110%0919.1600000000000033.33%600000.4400000000
20Zach BogosianMarlies (TOR)D1011220201000%22424.470000000003000%000000.8200000000
Team Total or Average83521635957521428020109210111791509118812.06%4101479917.72294776217941461023876321154.12%449000130.7819102363539
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Martin JonesMarlies (TOR)48311240.9003.1527262314314270110.8336478423
2Marc-Andre FleuryMarlies (TOR)82320.8913.3844441252290000.667380010
3Louis DomingueMarlies (TOR)30000.9470.87690011900000034000
Team Total or Average59331560.8993.13324064169167501195542433


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Calen AddisonMarlies (TOR)D242000-04-11CANNo173 Lbs5 ft11NoNoN/ANoNo42024-08-13FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------NHL Link
Gustav LindstromMarlies (TOR)D261998-10-20SWENo194 Lbs6 ft2NoNoFree AgentNoNo12024-09-09FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Hudson FaschingMarlies (TOR)RW291995-07-28USANo209 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Jackson LaCombeMarlies (TOR)D242001-01-09USANo205 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$17,143$No500,000$--------500,000$--------No--------NHL Link
Jesper BoqvistMarlies (TOR)C/LW261998-10-30SWENo184 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------NHL Link
Jesper FastMarlies (TOR)RW331991-12-02SWENo191 Lbs6 ft1NoNoFree AgentNoNo22024-09-11FalseFalsePro & Farm500,000$50,000$17,143$No500,000$--------500,000$--------No--------NHL Link
John LudvigMarlies (TOR)D242000-08-02CZENo213 Lbs6 ft1NoNoFree AgentNoNo12024-09-12FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Linus KarlssonMarlies (TOR)C251999-11-16SWENo178 Lbs6 ft1NoNoFree AgentNoNo42024-09-12FalseFalsePro & Farm750,000$75,000$25,714$No750,000$750,000$750,000$------750,000$750,000$750,000$------NoNoNo------
Logan StankovenMarlies (TOR)C/RW212003-02-26CANYes171 Lbs5 ft8NoNoProspectNoNo32024-08-10FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------NHL Link
Louis DomingueMarlies (TOR)G321992-03-06CANNo209 Lbs6 ft3NoNoFree AgentNoNo12024-11-02FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Marc Del GaizoMarlies (TOR)D251999-10-11USANo188 Lbs5 ft11NoNoFree AgentNoNo12024-09-11FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------
Marc-Andre FleuryMarlies (TOR)G401984-11-28CANNo185 Lbs6 ft2NoNoAssign ManuallyNoNo12024-08-26FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Marcus JohanssonMarlies (TOR)LW/RW341990-10-06SWENo203 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Mark JankowskiMarlies (TOR)C/LW301994-09-13CANNo212 Lbs6 ft4NoNoN/ANoNo3FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------NHL Link
Martin JonesMarlies (TOR)G351990-01-10CANNo203 Lbs6 ft5NoNoFree AgentNoNo12024-09-09FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Mattias JanmarkMarlies (TOR)LW/RW321992-12-08SWENo205 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------NHL Link
Peyton KrebsMarlies (TOR)C/LW242001-01-26CANNo186 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Philip BrobergMarlies (TOR)D232001-06-25SWENo212 Lbs6 ft4NoNoN/ANoNo3FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------NHL Link
Philip TomasinoMarlies (TOR)LW/RW232001-07-28CANNo179 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Phillip Di GiuseppeMarlies (TOR)LW311993-10-09CANNo193 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$17,143$No500,000$--------500,000$--------No--------NHL Link
Pierre-Olivier JosephMarlies (TOR)D251999-07-01CANNo185 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$17,143$No500,000$--------500,000$--------No--------NHL Link
Pierrick DubeMarlies (TOR)RW242001-01-07FRANo172 Lbs5 ft9NoNoFree AgentNoNo12024-09-12FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------
Ryan StromeMarlies (TOR)C/RW311993-07-11CANNo191 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm1,750,000$175,000$60,000$No1,750,000$1,750,000$-------1,750,000$1,750,000$-------NoNo-------NHL Link
Troy StecherMarlies (TOR)D301994-04-07CANNo184 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Tye KartyeMarlies (TOR)LW232001-04-30CANNo202 Lbs5 ft11NoNoFree AgentNoNo12024-09-03FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Vasily PodkolzinMarlies (TOR)RW232001-06-24RUSNo190 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Zach BogosianMarlies (TOR)D341990-07-15USANo231 Lbs6 ft3NoNoFree AgentNoNo12024-09-12FalseFalsePro & Farm1,000,000$100,000$34,286$No---------------------------NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2727.81194 Lbs6 ft11.81574,074$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tye KartyeMark JankowskiJesper Fast35122
2Jesper BoqvistLogan Stankoven35122
3Philip TomasinoPeyton KrebsHudson Fasching25122
4Mattias JanmarkPeyton KrebsVasily Podkolzin5122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Troy StecherJackson LaCombe35122
2Gustav LindstromCalen Addison35122
3Pierre-Olivier JosephJohn Ludvig30122
4Troy StecherJackson LaCombe0122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tye KartyeMark JankowskiJesper Fast60122
2Jesper BoqvistLogan Stankoven40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Troy StecherJackson LaCombe60122
2Gustav LindstromCalen Addison40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Peyton KrebsHudson Fasching60122
2Jesper Boqvist40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Troy StecherJackson LaCombe60122
2Gustav LindstromCalen Addison40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Mark Jankowski60122Troy StecherJackson LaCombe60122
2Logan Stankoven40122Gustav LindstromCalen Addison40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Mark JankowskiTye Kartye60122
2Logan Stankoven40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Troy StecherJackson LaCombe60122
2Gustav LindstromCalen Addison40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tye KartyeMark JankowskiLogan StankovenTroy StecherJackson LaCombe
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tye KartyeMark JankowskiJesper FastTroy StecherJackson LaCombe
Extra Forwards
Normal PowerPlayPenalty Kill
, Philip Tomasino, Hudson Fasching, Philip Tomasino
Extra Defensemen
Normal PowerPlayPenalty Kill
Calen Addison, Pierre-Olivier Joseph, John LudvigCalen AddisonCalen Addison, Pierre-Olivier Joseph
Penalty Shots
Jesper Fast, Mark Jankowski, Tye Kartye, Logan Stankoven,
Goalie
#1 : Marc-Andre Fleury, #2 : Martin Jones
Custom OT Lines Forwards
Jesper Fast, Mark Jankowski, Tye Kartye, Logan Stankoven, , Philip Tomasino, Philip Tomasino, Hudson Fasching, Mattias Janmark, Jesper Boqvist, Peyton Krebs
Custom OT Lines Defensemen
Troy Stecher, Jackson LaCombe, Gustav Lindstrom, Calen Addison, Pierre-Olivier Joseph


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces22000000963000000000002200000096341.0009152400777668459591609635355010123310330.00%5260.00%11003183654.63%961175754.70%49892154.07%150010951140353688367
2Admirals1010000034-11010000034-10000000000000.0003690077766845059160963535348822400.00%4175.00%11003183654.63%961175754.70%49892154.07%150010951140353688367
3Americiens531000102417722000000128431100010129380.80024406400777668421859160963535194461612220420.00%70100.00%01003183654.63%961175754.70%49892154.07%150010951140353688367
4Barons2020000069-32020000069-30000000000000.0006111700777668458591609635354517840100.00%4175.00%01003183654.63%961175754.70%49892154.07%150010951140353688367
5Broncos311000018802010000168-21100000020230.500815230177766849659160963535872123609222.22%11190.91%01003183654.63%961175754.70%49892154.07%150010951140353688367
6Bruins4210100015962200000010462010100055060.750152742007776684127591609635351142724993133.33%12375.00%01003183654.63%961175754.70%49892154.07%150010951140353688367
7Butter Knives5320000026215321000001513221100000118360.60026517700777668419059160963535198583111914321.43%12283.33%01003183654.63%961175754.70%49892154.07%150010951140353688367
8Canucks211000004131010000001-11100000040420.500461001777668450591609635354212636500.00%20100.00%01003183654.63%961175754.70%49892154.07%150010951140353688367
9Fighting Pandas614001001724-730200100813-531200000911-230.25017304720777668416859160963535158533612911218.18%18761.11%01003183654.63%961175754.70%49892154.07%150010951140353688367
10Firebirds211000001091110000006421010000045-120.5001017270077766846559160963535832410517228.57%5180.00%01003183654.63%961175754.70%49892154.07%150010951140353688367
11Griffins220000001477110000009451100000053241.00014233700777668496591609635356916434100.00%2150.00%01003183654.63%961175754.70%49892154.07%150010951140353688367
12Lions540010001961311000000734430010001239101.00019365502777668414959160963535130333610511545.45%14285.71%01003183654.63%961175754.70%49892154.07%150010951140353688367
13Lynx4210010011101220000007432010010046-250.6251121320077766849959160963535922331775120.00%10280.00%11003183654.63%961175754.70%49892154.07%150010951140353688367
14Nordiks11000000752110000007520000000000021.00071421007776684335916096353543122232150.00%10100.00%01003183654.63%961175754.70%49892154.07%150010951140353688367
15Punishers20001001660100010004311000000123-130.75061117007776684535916096353561261051000%50100.00%01003183654.63%961175754.70%49892154.07%150010951140353688367
16Roadrunners320001001915421000100121021100000075250.8331938570077766841315916096353510224177712758.33%4250.00%01003183654.63%961175754.70%49892154.07%150010951140353688367
17Tomahawks11000000422000000000001100000042221.000481200777668431591609635354816824100.00%4175.00%01003183654.63%961175754.70%49892154.07%150010951140353688367
18Wombats311001001112-11010000023-12100010099030.5001116270077766849359160963535891820519111.11%10190.00%11003183654.63%961175754.70%49892154.07%150010951140353688367
19Wranglers220000001248110000005321100000071641.00012233500777668495591609635358925644300.00%3166.67%01003183654.63%961175754.70%49892154.07%150010951140353688367
Total55291603412225175502714901201119992028157022111067630720.655225408633247776684186159160963535172846930811971283225.00%1332878.95%41003183654.63%961175754.70%49892154.07%150010951140353688367
_Since Last GM Reset55291603412225175502714901201119992028157022111067630720.655225408633247776684186159160963535172846930811971283225.00%1332878.95%41003183654.63%961175754.70%49892154.07%150010951140353688367
_Vs Conference3616130141114412915191060020181711017670121063585410.5691442614052177766841237591609635351151302216807942324.47%932078.49%31003183654.63%961175754.70%49892154.07%150010951140353688367
_Vs Division241190121093811212830010052421012360111041392280.5839316926220777668480259160963535756207138546531120.75%591476.27%11003183654.63%961175754.70%49892154.07%150010951140353688367

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5572SOL122540863318611728469308119724
All Games
GPWLOTWOTL SOWSOLGFGA
5529163412225175
Home Games
GPWLOTWOTL SOWSOLGFGA
27149120111999
Visitor Games
GPWLOTWOTL SOWSOLGFGA
28157221110676
Last 10 Games
WLOTWOTL SOWSOL
440101
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1283225.00%1332878.95%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
591609635357776684
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1003183654.63%961175754.70%49892154.07%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
150010951140353688367


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
14Lynx1Marlies3WBoxScore
423Marlies2Americiens4LBoxScore
525Marlies3Lions0WBoxScore
738Bruins2Marlies4WBoxScore
951Americiens4Marlies5WBoxScore
1269Fighting Pandas5Marlies3LBoxScore
1373Marlies2Lynx3LXBoxScore
1689Marlies3Butter Knives4LBoxScore
1795Butter Knives6Marlies5LBoxScore
19108Marlies3Bruins2WXBoxScore
21116Admirals4Marlies3LBoxScore
23130Marlies2Lions0WBoxScore
25140Bruins2Marlies6WBoxScore
28156Wranglers3Marlies5WBoxScore
32172Marlies1Fighting Pandas3LBoxScore
34180Fighting Pandas3Marlies2LXBoxScore
36192Marlies4Wombats3WBoxScore
39200Barons5Marlies3LBoxScore
42219Marlies6Americiens2WBoxScore
44225Nordiks5Marlies7WBoxScore
47241Marlies4Lions1WBoxScore
48247Wombats3Marlies2LBoxScore
50261Marlies2Broncos0WBoxScore
52271Broncos4Marlies3LXXBoxScore
55287Punishers3Marlies4WXBoxScore
56296Marlies4Firebirds5LBoxScore
59309Butter Knives4Marlies5WBoxScore
60316Marlies6Fighting Pandas5WBoxScore
63329Marlies4Americiens3WXXBoxScore
64336Barons4Marlies3LBoxScore
67351Marlies5Griffins3WBoxScore
69358Roadrunners5Marlies4LXBoxScore
72372Marlies3Lions2WXBoxScore
73379Butter Knives3Marlies5WBoxScore
76396Marlies6Aces4WBoxScore
78401Lions3Marlies7WBoxScore
80414Marlies2Bruins3LBoxScore
81422Roadrunners5Marlies8WBoxScore
84433Marlies8Butter Knives4WBoxScore
86440Marlies7Wranglers1WBoxScore
87449Americiens4Marlies7WBoxScore
89464Marlies2Lynx3LBoxScore
91473Firebirds4Marlies6WBoxScore
94488Marlies3Aces2WBoxScore
95494Lynx3Marlies4WBoxScore
97509Marlies4Tomahawks2WBoxScore
99515Fighting Pandas5Marlies3LBoxScore
100526Marlies5Wombats6LXBoxScore
103539Griffins4Marlies9WBoxScore
105551Marlies2Fighting Pandas3LBoxScore
107558Canucks1Marlies0LBoxScore
109574Broncos4Marlies3LBoxScore
111581Marlies7Roadrunners5WBoxScore
113590Marlies4Canucks0WBoxScore
114601Marlies2Punishers3LXXBoxScore
116609Aces-Marlies-
118622Marlies-Barracuda-
119629Firebirds-Marlies-
122641Marlies-Barons-
124652Wranglers-Marlies-
127666Ice Bats-Marlies-
129676Marlies-Roadrunners-
130686Marlies-Nordiks-
132695Bruins-Marlies-
136710Marlies-Broncos-
Trade Deadline --- Trades can’t be done after this day is simulated!
138718Americiens-Marlies-
141734Ice Bats-Marlies-
143744Marlies-Bruins-
145754Marlies-Ice Bats-
146761Wombats-Marlies-
149775Marlies-Admirals-
151782Admirals-Marlies-
152788Marlies-Firebirds-
156805Tomahawks-Marlies-
157814Marlies-Wranglers-
159822Marlies-Admirals-
160831Lynx-Marlies-
161835Marlies-Butter Knives-
164854Admirals-Marlies-
165859Marlies-Lynx-
169877Tomahawks-Marlies-
173893Barracuda-Marlies-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
14 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
1,392,016$ 1,550,000$ 1,550,000$ 500,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
1,550,000$ 1,063,457$ 27 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 60 11,714$ 702,840$




Marlies Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Marlies Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Marlies Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA