Login

Wranglers
GP: 56 | W: 20 | L: 27 | OTL: 9 | P: 49
GF: 231 | GA: 274 | PP%: 20.87% | PK%: 71.55%
GM : AOC | Morale : 27 | Team Overall : 60
Next Games #608 vs Broncos
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Wranglers
20-27-9, 49pts
2
FINAL
5 Tomahawks
31-19-3, 65pts
Team Stats
L2StreakW3
9-13-5Home Record13-13-2
11-14-4Home Record18-6-1
1-6-3Last 10 Games7-3-0
4.13Goals Per Game5.06
4.89Goals Against Per Game5.02
20.87%Power Play Percentage17.46%
71.55%Penalty Kill Percentage78.29%
Barracuda
26-24-5, 57pts
6
FINAL
4 Wranglers
20-27-9, 49pts
Team Stats
W1StreakL2
14-11-3Home Record9-13-5
12-13-2Home Record11-14-4
4-4-2Last 10 Games1-6-3
4.93Goals Per Game4.13
5.13Goals Against Per Game4.89
23.33%Power Play Percentage20.87%
71.01%Penalty Kill Percentage71.55%
Wranglers
20-27-9, 49pts
Day 116
Broncos
26-28-1, 53pts
Team Stats
L2StreakW3
9-13-5Home Record14-12-1
11-14-4Away Record12-16-0
1-6-3Last 10 Games6-4-0
4.13Goals Per Game3.84
4.89Goals Against Per Game3.84
20.87%Power Play Percentage16.80%
71.55%Penalty Kill Percentage73.76%
Wombats
32-22-2, 66pts
Day 117
Wranglers
20-27-9, 49pts
Team Stats
W2StreakL2
17-10-0Home Record9-13-5
15-12-2Away Record11-14-4
5-4-1Last 10 Games1-6-3
4.73Goals Per Game4.13
4.30Goals Against Per Game4.13
34.46%Power Play Percentage20.87%
77.30%Penalty Kill Percentage71.55%
Lions
16-34-6, 38pts
Day 120
Wranglers
20-27-9, 49pts
Team Stats
OTL1StreakL2
8-16-3Home Record9-13-5
8-18-3Away Record11-14-4
3-5-2Last 10 Games1-6-3
3.45Goals Per Game4.13
4.57Goals Against Per Game4.13
26.40%Power Play Percentage20.87%
78.76%Penalty Kill Percentage71.55%
Team Leaders
Taylor RaddyshGoals
Taylor Raddysh
6
Pavel MintyukovAssists
Pavel Mintyukov
42
Pavel MintyukovPoints
Pavel Mintyukov
47
Pavel MintyukovPlus/Minus
Pavel Mintyukov
10

Team Stats
Goals For
231
4.13 GFG
Shots For
2463
43.98 Avg
Power Play Percentage
20.9%
24 GF
Offensive Zone Start
40.1%
Goals Against
274
4.89 GAA
Shots Against
2431
43.41 Avg
Penalty Kill Percentage
71.6%%
33 GA
Defensive Zone Start
41.1%
Team Info

General ManagerAOC
CoachLanny McDonald
DivisionCentral
ConferenceWestern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance0
Season Tickets300


Roster Info

Pro Team18
Farm Team21
Contract Limit39 / 50
Prospects21


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Jakob SilfverbergX100.00555784707472916950625566507673050630341500,000$
2Kaapo KakkoX100.00625783697473757550606862516062046630234500,000$
3Taylor RaddyshX100.007157846871788564506153705564650516202621,000,000$
4Joshua Roy (R)X100.00605099686868567650636360525558050610213500,000$
5Justin BrazeauX100.00735693648061547250546456516466051600264500,000$
6Brendan LemieuxX100.00786578657760586950575459506765052590281500,000$
7Liam FoudyXX100.00585591626959527050595054506062050560243500,000$
8Riley TufteX100.00514179578350515150505049516565050520264500,000$
9Zack Ostapchuk (R)X100.00585089577450515050505049505557048510213500,000$
10Pavel Mintyukov (R)X100.00745882727174797350745366565661076650213500,000$
11Parker WotherspoonX100.00787180637072656850635276556870052650274500,000$
12Brett KulakX100.00695882636968936550605270557372051640314500,000$
13Tyson BarrieX100.005959807370736671507050665578750516403321,500,000$
14Ben HuttonX100.00616684647270656650625071557573051630312500,000$
Scratches
1John BeecherX100.00806686687867697475586171506164041640234500,000$
2Jakob PelletierX100.00585491615858526450565055505960019550232500,000$
3Gavin Brindley (R)X100.00503589576050515050505050505355019500201500,000$
TEAM AVERAGE100.0064568665726565665159546252646504860
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Calvin Pickard100.0077717475708071707178507576049720324500,000$
Scratches
TEAM AVERAGE100.007771747570807170717850757604972
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Lanny McDonald7585958070801CAN716500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Pavel MintyukovWranglers (ANA)D45542471016087395113289.80%4695921.32311142597000055000%000000.9800000131
2Taylor RaddyshWranglers (ANA)RW116511-90022122472225.00%1026524.17112220000020037.80%8200000.8311000211
3Brendan LemieuxWranglers (ANA)LW11369-2202682991410.34%420018.21123419000010076.47%1700000.9001000210
4Parker WotherspoonWranglers (ANA)D11369-8601712166718.75%1728125.582131024000060050.00%400000.6401000100
5Jakob SilfverbergWranglers (ANA)RW11257-8001030348245.88%319818.05022427000000038.89%1800000.7001000002
6Joshua RoyWranglers (ANA)RW11235-6006203610295.56%323421.2800004000020050.00%4000000.4300000010
7Justin BrazeauWranglers (ANA)RW11055-4201112176190%317916.2800002000010041.38%2900000.5600000010
8Ben HuttonWranglers (ANA)D11044-500181315380%2127124.6501162100005000%000000.2901000000
9John BeecherWranglers (ANA)C4134-1208131041010.00%18721.77000310000030058.25%10300000.9200000011
10Brett KulakWranglers (ANA)D11303-7208122131314.29%1827525.031011124000060033.33%600000.2200000002
11Tyson BarrieWranglers (ANA)D11123-80017201510156.67%1527625.10101723000041050.00%400000.2201000000
12Liam FoudyWranglers (ANA)C/RW11112-6001220162156.25%321219.3400002000020046.70%22700000.1900000000
13Zack OstapchukWranglers (ANA)C11101-104011152220.00%020919.0600000000000051.27%15800000.1000000000
14Nick BoninoAnaheim DucksC2011-200058040%03919.8600014000000054.90%5100000.5000000000
15Riley TufteWranglers (ANA)LW11000-600923260%019017.3400011000000060.00%200000000000000
Team Total or Average1832883111-72340252229300852169.33%144388121.2191827742830000931049.54%75900000.5716000687
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Calvin PickardWranglers (ANA)111630.8693.7860420382910120.6676110001
2John GibsonAnaheim Ducks10100.9641.9431001280000003000
Team Total or Average121730.8783.6863620393190126113001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Ben HuttonWranglers (ANA)D311993-04-20CANNo201 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$17,143$No500,000$--------500,000$--------No--------NHL Link
Brendan LemieuxWranglers (ANA)LW281996-03-15USANo215 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
Brett KulakWranglers (ANA)D311994-01-06CANNo192 Lbs6 ft2NoNoN/ANoNo42024-08-19FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------NHL Link
Calvin PickardWranglers (ANA)G321992-04-15CANNo206 Lbs6 ft1NoNoFree AgentNoNo42024-09-05FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------NHL Link
Gavin BrindleyWranglers (ANA)C202004-10-05USAYes175 Lbs5 ft9NoNoTrade2025-01-12NoNo12024-08-09FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------Link / NHL Link
Jakob PelletierWranglers (ANA)LW232001-03-07CANNo170 Lbs5 ft9NoNoTrade2025-01-12NoNo2FalseFalsePro & Farm500,000$50,000$17,143$No500,000$--------500,000$--------No--------NHL Link
Jakob SilfverbergWranglers (ANA)RW341990-10-13SWENo207 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------NHL Link
John BeecherWranglers (ANA)C232001-04-05USANo216 Lbs6 ft3NoNoFree AgentNoNo42024-09-03FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------NHL Link
Joshua RoyWranglers (ANA)RW212003-08-06CANYes192 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------NHL Link
Justin BrazeauWranglers (ANA)RW261998-02-02CANNo220 Lbs6 ft5NoNoFree AgentNoNo42024-09-05FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------NHL Link
Kaapo KakkoWranglers (ANA)RW232001-02-13FINNo205 Lbs6 ft2NoNoTrade2025-01-07NoNo42024-08-15FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------NHL Link
Liam FoudyWranglers (ANA)C/RW242000-02-04CANNo193 Lbs6 ft2NoNoFree AgentNoNo32024-09-08FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------NHL Link
Parker WotherspoonWranglers (ANA)D271997-08-24CANNo195 Lbs6 ft1NoNoFree AgentNoNo42024-09-04FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------
Pavel MintyukovWranglers (ANA)D212003-11-25RUSYes195 Lbs6 ft1NoNoTrade2025-01-12NoNo3FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------NHL Link
Riley TufteWranglers (ANA)LW261998-04-10USANo230 Lbs6 ft6NoNoFree AgentNoNo42024-09-06FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------NHL Link
Taylor RaddyshWranglers (ANA)RW261998-02-18CANNo198 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm1,000,000$100,000$34,286$No1,000,000$--------1,000,000$--------No--------NHL Link
Tyson BarrieWranglers (ANA)D331991-07-26CANNo197 Lbs5 ft11NoNoN/ANoNo2FalseFalsePro & Farm1,500,000$150,000$51,429$No1,500,000$--------1,500,000$--------No--------NHL Link
Zack OstapchukWranglers (ANA)C212003-05-29CANYes205 Lbs6 ft3NoNoN/ANoNo3FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1826.11201 Lbs6 ft22.83583,333$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jakob Silfverberg40122
2Brendan LemieuxTaylor Raddysh35122
3Riley TufteLiam FoudyJoshua Roy15122
4Zack OstapchukJustin Brazeau10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Parker WotherspoonBrett Kulak40122
2Tyson BarrieBen Hutton30122
3Parker WotherspoonBrett Kulak20122
4Tyson BarrieBen Hutton10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jakob Silfverberg60122
2Brendan LemieuxTaylor Raddysh40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Parker WotherspoonBrett Kulak60122
2Tyson BarrieBen Hutton40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Brendan Lemieux40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Parker WotherspoonBrett Kulak60122
2Tyson BarrieBen Hutton40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Parker WotherspoonBrett Kulak60122
240122Tyson BarrieBen Hutton40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Brendan Lemieux40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Parker WotherspoonBrett Kulak60122
2Tyson BarrieBen Hutton40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jakob SilfverbergParker WotherspoonBrett Kulak
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jakob SilfverbergParker WotherspoonBrett Kulak
Extra Forwards
Normal PowerPlayPenalty Kill
Taylor Raddysh, Joshua Roy, Justin BrazeauTaylor Raddysh, Joshua RoyTaylor Raddysh
Extra Defensemen
Normal PowerPlayPenalty Kill
Brett Kulak, Tyson Barrie, Ben HuttonBrett KulakBrett Kulak, Tyson Barrie
Penalty Shots
, , Jakob Silfverberg, , Taylor Raddysh
Goalie
#1 : Calvin Pickard, #2 :
Custom OT Lines Forwards
, , Jakob Silfverberg, , Taylor Raddysh, Joshua Roy, Joshua Roy, Justin Brazeau, Brendan Lemieux, Liam Foudy, Riley Tufte
Custom OT Lines Defensemen
Parker Wotherspoon, Brett Kulak, Tyson Barrie, Ben Hutton,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces5210020022211301002001215-322000000106460.60022446600967460218680278986219162492410022836.36%11372.73%01001215346.49%1012220845.83%490101448.32%12408811452394684325
2Admirals211000001314-11010000057-21100000087120.50013243700967460212880278986219120378493133.33%40100.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
3Americiens21000100131211100000042210000100910-130.750132639009674602116802789862191011710464125.00%5260.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
4Barons511002011417-330100101710-32100010077050.5001428420096746021878027898621914449301008112.50%14471.43%01001215346.49%1012220845.83%490101448.32%12408811452394684325
5Barracuda302000011621-520200000812-41000000189-110.16716324820967460216480278986219152506773133.33%2150.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
6Broncos11000000633110000006330000000000021.0006121800967460258802789862193012219200.00%10100.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
7Bruins21100000770110000005051010000027-520.50071219019674602828027898621996161143200.00%30100.00%11001215346.49%1012220845.83%490101448.32%12408811452394684325
8Butter Knives30300000918-920200000711-41010000027-500.00091726109674602142802789862191395112737114.29%7357.14%01001215346.49%1012220845.83%490101448.32%12408811452394684325
9Canucks633000001619-33210000099031200000710-360.50016284400967460220780278986219152532810415213.33%14471.43%01001215346.49%1012220845.83%490101448.32%12408811452394684325
10Fighting Pandas210001009901000010056-11100000043130.75091827009674602828027898621981201029200.00%5340.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
11Firebirds1010000024-2000000000001010000024-200.0002460096746023680278986219399025500.00%000%01001215346.49%1012220845.83%490101448.32%12408811452394684325
12Griffins21100000912-3110000006421010000038-520.5009182700967460210980278986219133371057300.00%4250.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
13Ice Bats614010003038-810001000761514000002332-940.33330598900967460230480278986219387963916912216.67%15660.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
14Lions11000000541110000005410000000000021.0005914009674602568027898621935114192150.00%2150.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
15Lynx1010000013-21010000013-20000000000000.0001230096746021780278986219338012300.00%000%01001215346.49%1012220845.83%490101448.32%12408811452394684325
16Marlies20200000412-81010000017-61010000035-200.0004812009674602898027898621995306403133.33%30100.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
17Nordiks32100000201731010000045-1220000001612440.6672036560096746021678027898621915336679200.00%30100.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
18Punishers522001001818021100000871311001001011-150.50018335100967460218680278986219172552210514428.57%11281.82%01001215346.49%1012220845.83%490101448.32%12408811452394684325
19Roadrunners1010000048-41010000048-40000000000000.00048120096746025580278986219404626100.00%3166.67%11001215346.49%1012220845.83%490101448.32%12408811452394684325
20Tomahawks211000001110100000000000211000001110120.5001119300096746026680278986219107231044000%5180.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
21Wombats1010000027-5000000000001010000027-500.000246009674602268027898621960148202150.00%40100.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
Total56192701702231274-432781301401104119-1529111400301127155-28490.438231441672319674602246380278986219243167725212361152420.87%1163371.55%21001215346.49%1012220845.83%490101448.32%12408811452394684325
_Since Last GM Reset56192701702231274-432781301401104119-1529111400301127155-28490.438231441672319674602246380278986219243167725212361152420.87%1163371.55%21001215346.49%1012220845.83%490101448.32%12408811452394684325
_Vs Conference38141601502161177-161757013016672-621990020195105-10370.4871613064672096746021632802789862191597459179854811923.46%812470.37%01001215346.49%1012220845.83%490101448.32%12408811452394684325
_Vs Division1989005027279-71036003013743-6953002013536-1230.605721372092096746027438027898621963820780386541527.78%381073.68%01001215346.49%1012220845.83%490101448.32%12408811452394684325

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5649L223144167224632431677252123631
All Games
GPWLOTWOTL SOWSOLGFGA
5619271702231274
Home Games
GPWLOTWOTL SOWSOLGFGA
278131401104119
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2911140301127155
Last 10 Games
WLOTWOTL SOWSOL
160201
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1152420.87%1163371.55%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
802789862199674602
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1001215346.49%1012220845.83%490101448.32%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12408811452394684325


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
11Punishers2Wranglers4WBoxScore
320Wranglers3Punishers6LBoxScore
422Wranglers3Ice Bats6LBoxScore
737Canucks4Wranglers5WBoxScore
840Wranglers5Ice Bats10LBoxScore
1058Punishers5Wranglers4LBoxScore
1370Aces5Wranglers4LBoxScore
1481Wranglers4Barons3WBoxScore
1792Barons2Wranglers1LBoxScore
19106Wranglers5Aces3WBoxScore
20114Barracuda6Wranglers4LBoxScore
22124Wranglers4Canucks5LBoxScore
24137Ice Bats6Wranglers7WXBoxScore
25144Wranglers9Tomahawks5WBoxScore
28156Wranglers3Marlies5LBoxScore
29159Wranglers7Ice Bats3WBoxScore
30163Wranglers8Barracuda9LXXBoxScore
33176Lions4Wranglers5WBoxScore
36193Wranglers8Admirals7WBoxScore
38198Canucks2Wranglers3WBoxScore
40207Wranglers2Butter Knives7LBoxScore
42218Admirals7Wranglers5LBoxScore
44226Wranglers4Fighting Pandas3WBoxScore
46237Wranglers2Ice Bats6LBoxScore
47242Broncos3Wranglers6WBoxScore
50260Wranglers2Bruins7LBoxScore
51264Roadrunners8Wranglers4LBoxScore
53276Wranglers2Wombats7LBoxScore
54285Butter Knives6Wranglers4LBoxScore
57299Wranglers3Barons4LXBoxScore
59308Canucks3Wranglers1LBoxScore
63328Griffins4Wranglers6WBoxScore
64337Wranglers5Aces3WBoxScore
66349Wranglers9Nordiks7WBoxScore
67352Barons4Wranglers3LXBoxScore
71367Wranglers6Punishers3WBoxScore
72374Bruins0Wranglers5WBoxScore
76391Wranglers3Griffins8LBoxScore
77397Fighting Pandas6Wranglers5LXBoxScore
80413Wranglers7Nordiks5WBoxScore
81418Americiens2Wranglers4WBoxScore
84430Wranglers6Ice Bats7LBoxScore
86440Marlies7Wranglers1LBoxScore
88456Wranglers9Americiens10LXBoxScore
89462Aces7Wranglers6LXBoxScore
92477Wranglers0Canucks4LBoxScore
93484Nordiks5Wranglers4LBoxScore
96503Wranglers1Punishers2LXBoxScore
97507Barons4Wranglers3LXXBoxScore
100523Wranglers3Canucks1WBoxScore
101529Lynx3Wranglers1LBoxScore
104543Wranglers2Firebirds4LBoxScore
105550Butter Knives5Wranglers3LBoxScore
108569Aces3Wranglers2LXBoxScore
110577Wranglers2Tomahawks5LBoxScore
113592Barracuda6Wranglers4LBoxScore
116608Wranglers-Broncos-
117615Wombats-Wranglers-
120631Lions-Wranglers-
122640Wranglers-Lynx-
124652Wranglers-Marlies-
125657Ice Bats-Wranglers-
128670Wranglers-Barons-
129679Punishers-Wranglers-
131687Wranglers-Aces-
134701Barracuda-Wranglers-
Trade Deadline --- Trades can’t be done after this day is simulated!
137716Wranglers-Griffins-
138722Firebirds-Wranglers-
140729Wranglers-Barracuda-
143745Nordiks-Wranglers-
145752Wranglers-Barracuda-
146764Wranglers-Lions-
147766Wranglers-Roadrunners-
148770Tomahawks-Wranglers-
153791Ice Bats-Wranglers-
155801Wranglers-Lions-
156807Wranglers-Roadrunners-
157814Marlies-Wranglers-
161836Griffins-Wranglers-
164856Tomahawks-Wranglers-
168874Lions-Wranglers-
173895Punishers-Wranglers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
14 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
1,009,405$ 1,050,000$ 1,050,000$ 500,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
1,050,000$ 680,850$ 18 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 60 8,857$ 531,420$




Wranglers Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Wranglers Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Wranglers Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA