Connexion

Wranglers
GP: 56 | W: 20 | L: 27 | OTL: 9 | P: 49
GF: 231 | GA: 274 | PP%: 20.87% | PK%: 71.55%
DG: AOC | Morale : 27 | Moyenne d’équipe : 60
Prochains matchs #608 vs Broncos
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Wranglers
20-27-9, 49pts
2
FINAL
5 Tomahawks
31-19-3, 65pts
Team Stats
L2SéquenceW3
9-13-5Fiche domicile13-13-2
11-14-4Fiche domicile18-6-1
1-6-3Derniers 10 matchs7-3-0
4.13Buts par match 5.06
4.89Buts contre par match 5.02
20.87%Pourcentage en avantage numérique17.46%
71.55%Pourcentage en désavantage numérique78.29%
Barracuda
26-24-5, 57pts
6
FINAL
4 Wranglers
20-27-9, 49pts
Team Stats
W1SéquenceL2
14-11-3Fiche domicile9-13-5
12-13-2Fiche domicile11-14-4
4-4-2Derniers 10 matchs1-6-3
4.93Buts par match 4.13
5.13Buts contre par match 4.89
23.33%Pourcentage en avantage numérique20.87%
71.01%Pourcentage en désavantage numérique71.55%
Wranglers
20-27-9, 49pts
Jour 116
Broncos
26-28-1, 53pts
Statistiques d’équipe
L2SéquenceW3
9-13-5Fiche domicile14-12-1
11-14-4Fiche visiteur12-16-0
1-6-310 derniers matchs6-4-0
4.13Buts par match 3.84
4.89Buts contre par match 3.84
20.87%Pourcentage en avantage numérique16.80%
71.55%Pourcentage en désavantage numérique73.76%
Wombats
32-22-2, 66pts
Jour 117
Wranglers
20-27-9, 49pts
Statistiques d’équipe
W2SéquenceL2
17-10-0Fiche domicile9-13-5
15-12-2Fiche visiteur11-14-4
5-4-110 derniers matchs1-6-3
4.73Buts par match 4.13
4.30Buts contre par match 4.13
34.46%Pourcentage en avantage numérique20.87%
77.30%Pourcentage en désavantage numérique71.55%
Lions
16-34-6, 38pts
Jour 120
Wranglers
20-27-9, 49pts
Statistiques d’équipe
OTL1SéquenceL2
8-16-3Fiche domicile9-13-5
8-18-3Fiche visiteur11-14-4
3-5-210 derniers matchs1-6-3
3.45Buts par match 4.13
4.57Buts contre par match 4.13
26.40%Pourcentage en avantage numérique20.87%
78.76%Pourcentage en désavantage numérique71.55%
Meneurs d'équipe
Taylor RaddyshButs
Taylor Raddysh
6
Pavel MintyukovPasses
Pavel Mintyukov
42
Pavel MintyukovPoints
Pavel Mintyukov
47
Pavel MintyukovPlus/Moins
Pavel Mintyukov
10

Statistiques d’équipe
Buts pour
231
4.13 GFG
Tirs pour
2463
43.98 Avg
Pourcentage en avantage numérique
20.9%
24 GF
Début de zone offensive
40.1%
Buts contre
274
4.89 GAA
Tirs contre
2431
43.41 Avg
Pourcentage en désavantage numérique
71.6%%
33 GA
Début de la zone défensive
41.1%
Informations de l'équipe

Directeur généralAOC
EntraîneurLanny McDonald
DivisionCentral
ConférenceWestern Conference
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison300


Informations de la formation

Équipe Pro18
Équipe Mineure21
Limite contact 39 / 50
Espoirs21


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Jakob SilfverbergX100.00555784707472916950625566507673050630341500,000$
2Kaapo KakkoX100.00625783697473757550606862516062046630234500,000$
3Taylor RaddyshX100.007157846871788564506153705564650516202621,000,000$
4Joshua Roy (R)X100.00605099686868567650636360525558050610213500,000$
5Justin BrazeauX100.00735693648061547250546456516466051600264500,000$
6Brendan LemieuxX100.00786578657760586950575459506765052590281500,000$
7Liam FoudyXX100.00585591626959527050595054506062050560243500,000$
8Riley TufteX100.00514179578350515150505049516565050520264500,000$
9Zack Ostapchuk (R)X100.00585089577450515050505049505557048510213500,000$
10Pavel Mintyukov (R)X100.00745882727174797350745366565661076650213500,000$
11Parker WotherspoonX100.00787180637072656850635276556870052650274500,000$
12Brett KulakX100.00695882636968936550605270557372051640314500,000$
13Tyson BarrieX100.005959807370736671507050665578750516403321,500,000$
14Ben HuttonX100.00616684647270656650625071557573051630312500,000$
Rayé
1John BeecherX100.00806686687867697475586171506164041640234500,000$
2Jakob PelletierX100.00585491615858526450565055505960019550232500,000$
3Gavin Brindley (R)X100.00503589576050515050505050505355019500201500,000$
MOYENNE D’ÉQUIPE100.0064568665726565665159546252646504860
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1John Gibson98.0071837877737372737250727373075710313500,000$
Rayé
MOYENNE D’ÉQUIPE98.007183787773737273725072737307571
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Lanny McDonald7585958070801CAN716500,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Pavel MintyukovWranglers (ANA)D45542471016087395113289.80%4695921.32311142597000055000%000000.9800000131
2Taylor RaddyshWranglers (ANA)RW116511-90022122472225.00%1026524.17112220000020037.80%8200000.8311000211
3Brendan LemieuxWranglers (ANA)LW11369-2202682991410.34%420018.21123419000010076.47%1700000.9001000210
4Parker WotherspoonWranglers (ANA)D11369-8601712166718.75%1728125.582131024000060050.00%400000.6401000100
5Jakob SilfverbergWranglers (ANA)RW11257-8001030348245.88%319818.05022427000000038.89%1800000.7001000002
6Joshua RoyWranglers (ANA)RW11235-6006203610295.56%323421.2800004000020050.00%4000000.4300000010
7Justin BrazeauWranglers (ANA)RW11055-4201112176190%317916.2800002000010041.38%2900000.5600000010
8Ben HuttonWranglers (ANA)D11044-500181315380%2127124.6501162100005000%000000.2901000000
9John BeecherWranglers (ANA)C4134-1208131041010.00%18721.77000310000030058.25%10300000.9200000011
10Brett KulakWranglers (ANA)D11303-7208122131314.29%1827525.031011124000060033.33%600000.2200000002
11Tyson BarrieWranglers (ANA)D11123-80017201510156.67%1527625.10101723000041050.00%400000.2201000000
12Liam FoudyWranglers (ANA)C/RW11112-6001220162156.25%321219.3400002000020046.70%22700000.1900000000
13Zack OstapchukWranglers (ANA)C11101-104011152220.00%020919.0600000000000051.27%15800000.1000000000
14Nick BoninoAnaheim DucksC2011-200058040%03919.8600014000000054.90%5100000.5000000000
15Riley TufteWranglers (ANA)LW11000-600923260%019017.3400011000000060.00%200000000000000
Statistiques d’équipe totales ou en moyenne1832883111-72340252229300852169.33%144388121.2191827742830000931049.54%75900000.5716000687
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Calvin PickardWranglers (ANA)111630.8693.7860420382910120.6676110001
2John GibsonAnaheim Ducks10100.9641.9431001280000003000
Statistiques d’équipe totales ou en moyenne121730.8783.6863620393190126113001


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Ben HuttonWranglers (ANA)D311993-04-20CANNo201 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$17,143$No500,000$--------500,000$--------No--------Lien NHL
Brendan LemieuxWranglers (ANA)LW281996-03-15USANo215 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------Lien NHL
Brett KulakWranglers (ANA)D311994-01-06CANNo192 Lbs6 ft2NoNoN/ANoNo42024-08-19FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Lien NHL
Gavin BrindleyWranglers (ANA)C202004-10-05USAYes175 Lbs5 ft9NoNoTrade2025-01-12NoNo12024-08-09FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------Lien / Lien NHL
Jakob PelletierWranglers (ANA)LW232001-03-07CANNo170 Lbs5 ft9NoNoTrade2025-01-12NoNo2FalseFalsePro & Farm500,000$50,000$17,143$No500,000$--------500,000$--------No--------Lien NHL
Jakob SilfverbergWranglers (ANA)RW341990-10-13SWENo207 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$17,143$No---------------------------Lien NHL
John BeecherWranglers (ANA)C232001-04-05USANo216 Lbs6 ft3NoNoFree AgentNoNo42024-09-03FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Lien NHL
John GibsonAnaheim DucksG311993-07-14USANo210 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm500,000$500,000$163,743$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien NHL
Joshua RoyWranglers (ANA)RW212003-08-06CANYes192 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien NHL
Justin BrazeauWranglers (ANA)RW261998-02-02CANNo220 Lbs6 ft5NoNoFree AgentNoNo42024-09-05FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Lien NHL
Kaapo KakkoWranglers (ANA)RW232001-02-13FINNo205 Lbs6 ft2NoNoTrade2025-01-07NoNo42024-08-15FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Lien NHL
Liam FoudyWranglers (ANA)C/RW242000-02-04CANNo193 Lbs6 ft2NoNoFree AgentNoNo32024-09-08FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien NHL
Parker WotherspoonWranglers (ANA)D271997-08-24CANNo195 Lbs6 ft1NoNoFree AgentNoNo42024-09-04FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------
Pavel MintyukovWranglers (ANA)D212003-11-25RUSYes195 Lbs6 ft1NoNoTrade2025-01-12NoNo3FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien NHL
Riley TufteWranglers (ANA)LW261998-04-10USANo230 Lbs6 ft6NoNoFree AgentNoNo42024-09-06FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Lien NHL
Taylor RaddyshWranglers (ANA)RW261998-02-18CANNo198 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm1,000,000$100,000$34,286$No1,000,000$--------1,000,000$--------No--------Lien NHL
Tyson BarrieWranglers (ANA)D331991-07-26CANNo197 Lbs5 ft11NoNoN/ANoNo2FalseFalsePro & Farm1,500,000$150,000$51,429$No1,500,000$--------1,500,000$--------No--------Lien NHL
Zack OstapchukWranglers (ANA)C212003-05-29CANYes205 Lbs6 ft3NoNoN/ANoNo3FalseFalsePro & Farm500,000$50,000$17,143$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
1826.06201 Lbs6 ft22.78583,333$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Jakob Silfverberg40122
2Brendan LemieuxTaylor Raddysh35122
3Riley TufteLiam FoudyJoshua Roy15122
4Zack OstapchukJustin Brazeau10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Parker WotherspoonBrett Kulak40122
2Tyson BarrieBen Hutton30122
3Parker WotherspoonBrett Kulak20122
4Tyson BarrieBen Hutton10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Jakob Silfverberg60122
2Brendan LemieuxTaylor Raddysh40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Parker WotherspoonBrett Kulak60122
2Tyson BarrieBen Hutton40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
160122
2Brendan Lemieux40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Parker WotherspoonBrett Kulak60122
2Tyson BarrieBen Hutton40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
160122Parker WotherspoonBrett Kulak60122
240122Tyson BarrieBen Hutton40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
160122
2Brendan Lemieux40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Parker WotherspoonBrett Kulak60122
2Tyson BarrieBen Hutton40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Jakob SilfverbergParker WotherspoonBrett Kulak
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Jakob SilfverbergParker WotherspoonBrett Kulak
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Taylor Raddysh, Joshua Roy, Justin BrazeauTaylor Raddysh, Joshua RoyTaylor Raddysh
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Brett Kulak, Tyson Barrie, Ben HuttonBrett KulakBrett Kulak, Tyson Barrie
Tirs de pénalité
, , Jakob Silfverberg, , Taylor Raddysh
Gardien
#1 : Calvin Pickard, #2 :
Lignes d’attaque personnalisées en prolongation
, , Jakob Silfverberg, , Taylor Raddysh, Joshua Roy, Joshua Roy, Justin Brazeau, Brendan Lemieux, Liam Foudy, Riley Tufte
Lignes de défense personnalisées en prolongation
Parker Wotherspoon, Brett Kulak, Tyson Barrie, Ben Hutton,


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces5210020022211301002001215-322000000106460.60022446600967460218680278986219162492410022836.36%11372.73%01001215346.49%1012220845.83%490101448.32%12408811452394684325
2Admirals211000001314-11010000057-21100000087120.50013243700967460212880278986219120378493133.33%40100.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
3Americiens21000100131211100000042210000100910-130.750132639009674602116802789862191011710464125.00%5260.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
4Barons511002011417-330100101710-32100010077050.5001428420096746021878027898621914449301008112.50%14471.43%01001215346.49%1012220845.83%490101448.32%12408811452394684325
5Barracuda302000011621-520200000812-41000000189-110.16716324820967460216480278986219152506773133.33%2150.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
6Broncos11000000633110000006330000000000021.0006121800967460258802789862193012219200.00%10100.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
7Bruins21100000770110000005051010000027-520.50071219019674602828027898621996161143200.00%30100.00%11001215346.49%1012220845.83%490101448.32%12408811452394684325
8Butter Knives30300000918-920200000711-41010000027-500.00091726109674602142802789862191395112737114.29%7357.14%01001215346.49%1012220845.83%490101448.32%12408811452394684325
9Canucks633000001619-33210000099031200000710-360.50016284400967460220780278986219152532810415213.33%14471.43%01001215346.49%1012220845.83%490101448.32%12408811452394684325
10Fighting Pandas210001009901000010056-11100000043130.75091827009674602828027898621981201029200.00%5340.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
11Firebirds1010000024-2000000000001010000024-200.0002460096746023680278986219399025500.00%000%01001215346.49%1012220845.83%490101448.32%12408811452394684325
12Griffins21100000912-3110000006421010000038-520.5009182700967460210980278986219133371057300.00%4250.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
13Ice Bats614010003038-810001000761514000002332-940.33330598900967460230480278986219387963916912216.67%15660.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
14Lions11000000541110000005410000000000021.0005914009674602568027898621935114192150.00%2150.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
15Lynx1010000013-21010000013-20000000000000.0001230096746021780278986219338012300.00%000%01001215346.49%1012220845.83%490101448.32%12408811452394684325
16Marlies20200000412-81010000017-61010000035-200.0004812009674602898027898621995306403133.33%30100.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
17Nordiks32100000201731010000045-1220000001612440.6672036560096746021678027898621915336679200.00%30100.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
18Punishers522001001818021100000871311001001011-150.50018335100967460218680278986219172552210514428.57%11281.82%01001215346.49%1012220845.83%490101448.32%12408811452394684325
19Roadrunners1010000048-41010000048-40000000000000.00048120096746025580278986219404626100.00%3166.67%11001215346.49%1012220845.83%490101448.32%12408811452394684325
20Tomahawks211000001110100000000000211000001110120.5001119300096746026680278986219107231044000%5180.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
21Wombats1010000027-5000000000001010000027-500.000246009674602268027898621960148202150.00%40100.00%01001215346.49%1012220845.83%490101448.32%12408811452394684325
Total56192701702231274-432781301401104119-1529111400301127155-28490.438231441672319674602246380278986219243167725212361152420.87%1163371.55%21001215346.49%1012220845.83%490101448.32%12408811452394684325
_Since Last GM Reset56192701702231274-432781301401104119-1529111400301127155-28490.438231441672319674602246380278986219243167725212361152420.87%1163371.55%21001215346.49%1012220845.83%490101448.32%12408811452394684325
_Vs Conference38141601502161177-161757013016672-621990020195105-10370.4871613064672096746021632802789862191597459179854811923.46%812470.37%01001215346.49%1012220845.83%490101448.32%12408811452394684325
_Vs Division1989005027279-71036003013743-6953002013536-1230.605721372092096746027438027898621963820780386541527.78%381073.68%01001215346.49%1012220845.83%490101448.32%12408811452394684325

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
5649L223144167224632431677252123631
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
5619271702231274
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
278131401104119
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
2911140301127155
Derniers 10 matchs
WLOTWOTL SOWSOL
160201
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
1152420.87%1163371.55%2
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
802789862199674602
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1001215346.49%1012220845.83%490101448.32%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
12408811452394684325


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
11Punishers2Wranglers4WSommaire du match
320Wranglers3Punishers6LSommaire du match
422Wranglers3Ice Bats6LSommaire du match
737Canucks4Wranglers5WSommaire du match
840Wranglers5Ice Bats10LSommaire du match
1058Punishers5Wranglers4LSommaire du match
1370Aces5Wranglers4LSommaire du match
1481Wranglers4Barons3WSommaire du match
1792Barons2Wranglers1LSommaire du match
19106Wranglers5Aces3WSommaire du match
20114Barracuda6Wranglers4LSommaire du match
22124Wranglers4Canucks5LSommaire du match
24137Ice Bats6Wranglers7WXSommaire du match
25144Wranglers9Tomahawks5WSommaire du match
28156Wranglers3Marlies5LSommaire du match
29159Wranglers7Ice Bats3WSommaire du match
30163Wranglers8Barracuda9LXXSommaire du match
33176Lions4Wranglers5WSommaire du match
36193Wranglers8Admirals7WSommaire du match
38198Canucks2Wranglers3WSommaire du match
40207Wranglers2Butter Knives7LSommaire du match
42218Admirals7Wranglers5LSommaire du match
44226Wranglers4Fighting Pandas3WSommaire du match
46237Wranglers2Ice Bats6LSommaire du match
47242Broncos3Wranglers6WSommaire du match
50260Wranglers2Bruins7LSommaire du match
51264Roadrunners8Wranglers4LSommaire du match
53276Wranglers2Wombats7LSommaire du match
54285Butter Knives6Wranglers4LSommaire du match
57299Wranglers3Barons4LXSommaire du match
59308Canucks3Wranglers1LSommaire du match
63328Griffins4Wranglers6WSommaire du match
64337Wranglers5Aces3WSommaire du match
66349Wranglers9Nordiks7WSommaire du match
67352Barons4Wranglers3LXSommaire du match
71367Wranglers6Punishers3WSommaire du match
72374Bruins0Wranglers5WSommaire du match
76391Wranglers3Griffins8LSommaire du match
77397Fighting Pandas6Wranglers5LXSommaire du match
80413Wranglers7Nordiks5WSommaire du match
81418Americiens2Wranglers4WSommaire du match
84430Wranglers6Ice Bats7LSommaire du match
86440Marlies7Wranglers1LSommaire du match
88456Wranglers9Americiens10LXSommaire du match
89462Aces7Wranglers6LXSommaire du match
92477Wranglers0Canucks4LSommaire du match
93484Nordiks5Wranglers4LSommaire du match
96503Wranglers1Punishers2LXSommaire du match
97507Barons4Wranglers3LXXSommaire du match
100523Wranglers3Canucks1WSommaire du match
101529Lynx3Wranglers1LSommaire du match
104543Wranglers2Firebirds4LSommaire du match
105550Butter Knives5Wranglers3LSommaire du match
108569Aces3Wranglers2LXSommaire du match
110577Wranglers2Tomahawks5LSommaire du match
113592Barracuda6Wranglers4LSommaire du match
116608Wranglers-Broncos-
117615Wombats-Wranglers-
120631Lions-Wranglers-
122640Wranglers-Lynx-
124652Wranglers-Marlies-
125657Ice Bats-Wranglers-
128670Wranglers-Barons-
129679Punishers-Wranglers-
131687Wranglers-Aces-
134701Barracuda-Wranglers-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
137716Wranglers-Griffins-
138722Firebirds-Wranglers-
140729Wranglers-Barracuda-
143745Nordiks-Wranglers-
145752Wranglers-Barracuda-
146764Wranglers-Lions-
147766Wranglers-Roadrunners-
148770Tomahawks-Wranglers-
153791Ice Bats-Wranglers-
155801Wranglers-Lions-
156807Wranglers-Roadrunners-
157814Marlies-Wranglers-
161836Griffins-Wranglers-
164856Tomahawks-Wranglers-
168874Lions-Wranglers-
173895Punishers-Wranglers-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
14 0 - 0.00% 0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
1,009,405$ 1,050,000$ 1,050,000$ 500,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
1,050,000$ 680,850$ 18 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 60 8,857$ 531,420$




Wranglers Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Wranglers Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Wranglers Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA