Please rotate your device to landscape mode for a better experience.
Login

Fighting Pandas
GP: 27 | W: 14 | L: 9 | OTL: 4 | P: 32
GF: 117 | GA: 102 | PP%: 31.37% | PK%: 83.13%
GM : Hunter Jones | Morale : 50 | Team Overall : 60
Next Games #305 vs Roadrunners

Game Center
Admirals
5-20-1, 11pts
4
FINAL
3 Fighting Pandas
14-9-4, 32pts
Team Stats
L1StreakOTL1
2-11-1Home Record6-4-4
3-9-0Home Record8-5-0
3-7-0Last 10 Games4-3-3
3.50Goals Per Game4.33
5.81Goals Against Per Game3.78
17.46%Power Play Percentage31.37%
69.81%Penalty Kill Percentage83.13%
Firebirds
16-11-0, 32pts
5
FINAL
4 Fighting Pandas
14-9-4, 32pts
Team Stats
OTW1StreakOTL1
9-4-0Home Record6-4-4
7-7-0Home Record8-5-0
7-3-0Last 10 Games4-3-3
4.85Goals Per Game4.33
4.37Goals Against Per Game3.78
19.70%Power Play Percentage31.37%
80.00%Penalty Kill Percentage83.13%
Fighting Pandas
14-9-4, 32pts
Day 61
Roadrunners
20-7-1, 41pts
Team Stats
OTL1StreakL1
6-4-4Home Record11-2-0
8-5-0Away Record9-5-1
4-3-3Last 10 Games7-2-1
4.33Goals Per Game3.89
3.78Goals Against Per Game3.89
31.37%Power Play Percentage29.41%
83.13%Penalty Kill Percentage86.15%
Wranglers
16-9-2, 34pts
Day 63
Fighting Pandas
14-9-4, 32pts
Team Stats
OTW1StreakOTL1
9-5-0Home Record6-4-4
7-4-2Away Record8-5-0
5-5-0Last 10 Games4-3-3
4.89Goals Per Game4.33
4.67Goals Against Per Game4.33
12.24%Power Play Percentage31.37%
66.67%Penalty Kill Percentage83.13%
Fighting Pandas
14-9-4, 32pts
Day 66
Griffins
14-13-0, 28pts
Team Stats
OTL1StreakW1
6-4-4Home Record7-6-0
8-5-0Away Record7-7-0
4-3-3Last 10 Games6-4-0
4.33Goals Per Game5.63
3.78Goals Against Per Game5.63
31.37%Power Play Percentage18.75%
83.13%Penalty Kill Percentage68.75%
Team Leaders
Connor BrownGoals
Connor Brown
22
Sean DurziAssists
Sean Durzi
21
Connor BrownPoints
Connor Brown
39
Keegan KolesarPlus/Minus
Keegan Kolesar
9
Jakub DobesWins
Jakub Dobes
13
Cayden PrimeauSave Percentage
Cayden Primeau
0.897

Team Stats
Goals For
117
4.33 GFG
Shots For
867
32.11 Avg
Power Play Percentage
31.4%
16 GF
Offensive Zone Start
38.6%
Goals Against
102
3.78 GAA
Shots Against
887
32.85 Avg
Penalty Kill Percentage
83.1%%
14 GA
Defensive Zone Start
39.6%
Team Info

General ManagerHunter Jones
CoachPatrick Lalime
DivisionAtlantic
ConferenceEastern Conference
CaptainJeff Skinner
Assistant #1Ryker Evans
Assistant #2Keegan Kolesar


Arena Info

Capacity3,000
Attendance0
Season Tickets300


Roster Info

Pro Team24
Farm Team19
Contract Limit43 / 50
Prospects30


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Connor BrownX100.00535494676574927050676876517273067660312500,000$
2Keegan Kolesar (A)X99.00857188687772927450676467506667066660282500,000$
3Mackie Samoskevich (R)XX100.00765590756473837350686960545659066650232500,000$
4Jeff Skinner (C)XX99.006556896971728373576570605177750616503312,000,000$
5Radek FaksaX100.00785978657772826579645472617474063640313500,000$
6Cole KoepkeX100.00816292667469836750616366506565064630271500,000$
7Beck MalenstynX100.00826183637567865861595167506667064610272700,000$
8Alexander HoltzX100.00655689667169706150625359535759059590232500,000$
9Samuel Helenius (R)X100.00846989657463676063585560505758062590233750,000$
10Ben JonesX100.00747499606661555250534959506463056550264500,000$
11Arshdeep BainsX100.00645089576560535250505054506261048530242500,000$
12Ryker Evans (A)X100.00775979677075877250685470565963063660232500,000$
13Sean DurziX100.006166766770756271506660725665680656402711,000,000$
14Kaedan KorczakX100.00725696627466646850655070656165062630232500,000$
15Declan ChisholmX100.00635691656871806750605267556364062630252500,000$
16Samuel BolducX100.00503594588261585050504949556163059540242500,000$
Scratches
1Ivan Ivan (R)XX100.00555589646764626055575858505858032570232500,000$
2Matej BlümelX100.00515089577350515050505050506061023510254500,000$
3Georgii MerkulovX100.00503983576150535050505050505860023510251500,000$
4Alec MartinezX100.00645792657474677050636170568682057660382700,000$
5Ryan JohnsonX100.00504740577050545050505050556062023520241500,000$
TEAM AVERAGE99.9067578664716671635360566253646505560
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Jakub Dobes (R)98.0072687079746864696765876063022670243750,000$
2Devon Levi100.0050646071505050505050505656056530231500,000$
Scratches
1Cayden Primeau100.0050656176615453555050596161045570264500,000$
TEAM AVERAGE99.335766647562575658565565596004159
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Patrick Lalime9090957070651CAN515500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Connor BrownFighting Pandas (OTT)RW27221739420154144317715.28%1253819.9425713390001420348.84%8600021.4522000501
2Keegan KolesarFighting Pandas (OTT)RW2718143291808262102347117.65%762723.2524612400000722050.50%20000001.0202000513
3Mackie SamoskevichFighting Pandas (OTT)C/RW271219316100153977214915.58%550818.832357410001412047.39%59500101.2222000240
4Cole KoepkeFighting Pandas (OTT)LW271313264120332869135018.84%450918.88314839000021146.34%4100001.0200000112
5Radek FaksaFighting Pandas (OTT)C2752025510071465514539.09%249418.33134639000001164.37%59500001.0101000022
6Alec MartinezFighting Pandas (OTT)D2542024812012233751810.81%2457523.042461239000158000%000000.8300000002
7Jeff SkinnerFighting Pandas (OTT)LW/RW27121224620203791296113.19%764323.841127400002780052.63%5700000.7502000230
8Sean DurziFighting Pandas (OTT)D2722123519547233412295.88%2756620.991451436000062100%000000.8101001122
9Ryker EvansFighting Pandas (OTT)D2721820728091202313248.70%3963423.511231042000059000%000000.6300000003
10Kaedan KorczakFighting Pandas (OTT)D271141551403920174145.88%3254120.06011536000056100%000000.5511000101
11Beck MalenstynFighting Pandas (OTT)LW27114153120383872255615.28%1044616.55000010000193143.18%4400000.6700000021
12Samuel HeleniusFighting Pandas (OTT)C2787153100395760143813.33%641215.2800000000002055.60%47300000.7300000002
13Declan ChisholmFighting Pandas (OTT)D275914122072253281115.63%4144216.3810145000013000%000000.6300000210
14Alexander HoltzFighting Pandas (OTT)RW27110114605264419352.27%544216.38000010001250044.26%6100000.5000000000
15Samuel BolducFighting Pandas (OTT)D270775401745170%1844016.3000002000027000%000000.3200000010
16Ben JonesFighting Pandas (OTT)C27000-200000010%0471.7700002000090030.00%100000000000000
17Ivan IvanFighting Pandas (OTT)C/LW7000-300041120%1253.6800000000000038.71%310000000000000
Team Total or Average43711620532170181558250686324459613.44%240789918.0816284498407000656913653.85%219300120.81511001191719
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jakub DobesFighting Pandas (OTT)2713920.8803.891435009377804000270110
2Cayden PrimeauFighting Pandas (OTT)20000.8973.1676004390000007000
Team Total or Average2913920.8813.85151100978170400277110


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Alec MartinezFighting Pandas (OTT)D381987-07-26USANo210 Lbs6 ft1NoNoTrade2025-03-05NoNo22024-08-21FalseFalsePro & Farm700,000$70,000$47,056$No700,000$--------700,000$--------No--------Link / NHL Link
Alexander HoltzFighting Pandas (OTT)RW232002-01-23SWENo198 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Arshdeep BainsFighting Pandas (OTT)LW242001-01-09CANNo184 Lbs6 ft0NoNoFree AgentNoNo22025-07-23FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Beck MalenstynFighting Pandas (OTT)LW271998-02-04CANNo209 Lbs6 ft3NoNoAssign ManuallyNoNo22024-08-21FalseFalsePro & Farm700,000$70,000$47,056$No700,000$--------700,000$--------No--------Link / NHL Link
Ben JonesFighting Pandas (OTT)C261999-02-26CANNo187 Lbs6 ft0NoNoFree AgentNoNo42025-07-25FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Link / NHL Link
Cayden PrimeauFighting Pandas (OTT)G261999-08-11USANo205 Lbs6 ft3NoNoFree AgentNoNo42025-07-25FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Link / NHL Link
Cole KoepkeFighting Pandas (OTT)LW271998-05-17USANo207 Lbs6 ft1NoNoFree AgentNoNo12024-10-11FalseFalsePro & Farm500,000$50,000$33,611$No---------------------------Link / NHL Link
Connor BrownFighting Pandas (OTT)RW311994-01-14CANNo184 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Declan ChisholmFighting Pandas (OTT)D252000-01-12CANNo190 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Devon LeviFighting Pandas (OTT)G232001-12-27CANNo192 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$33,611$No---------------------------Link / NHL Link
Georgii MerkulovFighting Pandas (OTT)C252000-10-10RUSNo176 Lbs5 ft11NoNoFree AgentNoNo12024-09-09FalseFalsePro & Farm500,000$50,000$33,611$No---------------------------Link / NHL Link
Ivan IvanFighting Pandas (OTT)C/LW232002-08-20CZEYes190 Lbs6 ft0NoNoFree AgentNoNo22025-08-09FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Jakub DobesFighting Pandas (OTT)G242001-05-27CZEYes215 Lbs6 ft4NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm750,000$75,000$50,417$No750,000$750,000$-------750,000$750,000$-------NoNo-------Link / NHL Link
Jeff SkinnerFighting Pandas (OTT)LW/RW331992-05-16CANNo200 Lbs5 ft11NoNoTrade2024-08-25NoNo1FalseFalsePro & Farm2,000,000$200,000$134,444$No---------------------------Link / NHL Link
Kaedan KorczakFighting Pandas (OTT)D232002-01-18CANNo202 Lbs6 ft3NoNoTrade2025-08-04NoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Keegan KolesarFighting Pandas (OTT)RW281997-04-08CANNo216 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Mackie SamoskevichFighting Pandas (OTT)C/RW232002-11-15USAYes180 Lbs5 ft11NoNoTrade2025-08-04NoNo22024-08-10FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Matej BlümelFighting Pandas (OTT)RW252000-05-31CZENo205 Lbs6 ft0NoNoFree AgentNoNo42025-07-25FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Link
Radek FaksaFighting Pandas (OTT)C311994-01-09CZENo215 Lbs6 ft3NoNoN/ANoNo32024-08-19FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Ryan JohnsonFighting Pandas (OTT)D242001-07-24USANo195 Lbs6 ft1NoNoFree AgentNoNo12024-09-09FalseFalsePro & Farm500,000$50,000$33,611$No---------------------------Link / NHL Link
Ryker EvansFighting Pandas (OTT)D232001-12-13CANNo195 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Samuel BolducFighting Pandas (OTT)D242000-12-09CANNo224 Lbs6 ft4NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Samuel HeleniusFighting Pandas (OTT)C232002-11-26USAYes201 Lbs6 ft6NoNoFree AgentNoNo32025-08-10FalseFalsePro & Farm750,000$75,000$50,417$No750,000$750,000$-------750,000$750,000$-------NoNo-------Link / NHL Link
Sean DurziFighting Pandas (OTT)D271998-10-21CANNo196 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm1,000,000$100,000$67,222$No---------------------------Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2426.08199 Lbs6 ft12.13620,833$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jeff SkinnerMackie SamoskevichKeegan Kolesar40122
2Cole KoepkeRadek FaksaConnor Brown30122
3Beck MalenstynSamuel HeleniusAlexander Holtz20122
4Keegan KolesarJeff Skinner10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryker Evans40122
2Sean DurziKaedan Korczak30122
3Declan ChisholmSamuel Bolduc20122
4Ryker Evans10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jeff SkinnerMackie SamoskevichKeegan Kolesar60122
2Cole KoepkeRadek FaksaConnor Brown40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryker Evans60122
2Sean DurziKaedan Korczak40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Keegan KolesarJeff Skinner60122
2Connor BrownMackie Samoskevich40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryker Evans60122
2Sean DurziKaedan Korczak40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Keegan Kolesar60122Ryker Evans60122
2Jeff Skinner40122Sean DurziKaedan Korczak40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Keegan KolesarJeff Skinner60122
2Connor BrownMackie Samoskevich40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryker Evans60122
2Sean DurziKaedan Korczak40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jeff SkinnerMackie SamoskevichKeegan KolesarRyker Evans
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jeff SkinnerMackie SamoskevichKeegan KolesarRyker Evans
Extra Forwards
Normal PowerPlayPenalty Kill
Ben Jones, Beck Malenstyn, Alexander HoltzBen Jones, Beck MalenstynAlexander Holtz
Extra Defensemen
Normal PowerPlayPenalty Kill
Declan Chisholm, Samuel Bolduc, Sean DurziDeclan ChisholmSamuel Bolduc, Sean Durzi
Penalty Shots
Keegan Kolesar, Jeff Skinner, Connor Brown, Mackie Samoskevich, Radek Faksa
Goalie
#1 : Jakub Dobes, #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000034-11010000034-10000000000000.00036900423142622265288303222561017000%50100.00%048286155.98%46888353.00%26948455.58%709506588182346180
2Americiens21100000871110000005321010000034-120.50081523004231426702652883032274286504125.00%3166.67%048286155.98%46888353.00%26948455.58%709506588182346180
3Barracuda210001009811000010067-11100000031230.75091726004231426542652883032247168498337.50%4175.00%048286155.98%46888353.00%26948455.58%709506588182346180
4Broncos422000001513200000000000422000001513240.50015264100423142695265288303221132720833266.67%10280.00%048286155.98%46888353.00%26948455.58%709506588182346180
5Bruins210010001082110000005411000100054141.0001016260042314267526528830322641120457228.57%9188.89%048286155.98%46888353.00%26948455.58%709506588182346180
6Butter Knives211000001073110000007251010000035-220.5001017270042314268026528830322671822436116.67%11281.82%048286155.98%46888353.00%26948455.58%709506588182346180
7Firebirds2100010011742100010011740000000000030.7501120310042314267026528830322791918513133.33%9188.89%048286155.98%46888353.00%26948455.58%709506588182346180
8Lions11000000743000000000001100000074321.0007132000423142637265288303224088273133.33%4175.00%048286155.98%46888353.00%26948455.58%709506588182346180
9Lynx22000000945110000007341100000021141.0009162500423142661265288303225412438200.00%10100.00%048286155.98%46888353.00%26948455.58%709506588182346180
10Marlies30200010916-72020000019-81000001087120.333916250042314268626528830322802426546233.33%11372.73%048286155.98%46888353.00%26948455.58%709506588182346180
11Nordiks201000011214-2201000011214-20000000000010.25012213300423142688265288303221013415454125.00%40100.00%048286155.98%46888353.00%26948455.58%709506588182346180
12Roadrunners2110000034-1110000003121010000003-320.500369004231426612652883032254101441200.00%7271.43%048286155.98%46888353.00%26948455.58%709506588182346180
13Tomahawks1000010034-11000010034-10000000000010.500347004231426322652883032253118222150.00%40100.00%048286155.98%46888353.00%26948455.58%709506588182346180
14Wranglers11000000826000000000001100000082621.000813210042314263626528830322361621911100.00%10100.00%048286155.98%46888353.00%26948455.58%709506588182346180
Total27129013111171021514640030163585136501010544410320.59311720632300423142686726528830322887240181584511631.37%831483.13%048286155.98%46888353.00%26948455.58%709506588182346180
_Since Last GM Reset27129013111171021514640030163585136501010544410320.59311720632300423142686726528830322887240181584511631.37%831483.13%048286155.98%46888353.00%26948455.58%709506588182346180
_Vs Conference20980111078708106300100423391035010103637-1230.575781382160042314266202652883032261015514042233927.27%661281.82%048286155.98%46888353.00%26948455.58%709506588182346180
_Vs Division1154010104642464200000252145120101021210140.636468012600423142637226528830322339937823025624.00%35780.00%048286155.98%46888353.00%26948455.58%709506588182346180

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2732OTL111720632386788724018158400
All Games
GPWLOTWOTL SOWSOLGFGA
271291311117102
Home Games
GPWLOTWOTL SOWSOLGFGA
146403016358
Visitor Games
GPWLOTWOTL SOWSOLGFGA
136510105444
Last 10 Games
WLOTWOTL SOWSOL
430201
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
511631.37%831483.13%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
265288303224231426
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
48286155.98%46888353.00%26948455.58%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
709506588182346180


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
27Marlies6Fighting Pandas1LBoxScore
623Fighting Pandas3Americiens4LBoxScore
834Americiens3Fighting Pandas5WBoxScore
938Fighting Pandas2Broncos1WBoxScore
1254Bruins4Fighting Pandas5WBoxScore
1361Fighting Pandas3Broncos6LBoxScore
1674Butter Knives2Fighting Pandas7WBoxScore
1884Fighting Pandas5Bruins4WXBoxScore
2098Lynx3Fighting Pandas7WBoxScore
21105Fighting Pandas0Roadrunners3LBoxScore
25119Roadrunners1Fighting Pandas3WBoxScore
26125Fighting Pandas2Lynx1WBoxScore
29138Fighting Pandas3Broncos5LBoxScore
31147Marlies3Fighting Pandas0LBoxScore
32154Fighting Pandas8Marlies7WXXBoxScore
35169Firebirds2Fighting Pandas7WBoxScore
39184Tomahawks4Fighting Pandas3LXBoxScore
41193Fighting Pandas3Barracuda1WBoxScore
43201Fighting Pandas3Butter Knives5LBoxScore
45212Nordiks7Fighting Pandas6LXXBoxScore
48226Fighting Pandas7Broncos1WBoxScore
49234Nordiks7Fighting Pandas6LBoxScore
51249Barracuda7Fighting Pandas6LXBoxScore
53260Fighting Pandas7Lions4WBoxScore
55271Fighting Pandas8Wranglers2WBoxScore
56278Admirals4Fighting Pandas3LBoxScore
59293Firebirds5Fighting Pandas4LXBoxScore
61305Fighting Pandas-Roadrunners-
63315Wranglers-Fighting Pandas-
66325Fighting Pandas-Griffins-
68337Lions-Fighting Pandas-
70348Fighting Pandas-Aces-
72358Fighting Pandas-Wombats-
74365Marlies-Fighting Pandas-
76380Barons-Fighting Pandas-
78388Fighting Pandas-Ice Bats-
80401Griffins-Fighting Pandas-
82412Fighting Pandas-Roadrunners-
84424Canucks-Fighting Pandas-
85431Fighting Pandas-Quacken-
88442Fighting Pandas-Butter Knives-
90451Butter Knives-Fighting Pandas-
92461Fighting Pandas-Barons-
95471Roadrunners-Fighting Pandas-
97482Fighting Pandas-Nordiks-
99492Fighting Pandas-Admirals-
100501Bruins-Fighting Pandas-
102512Fighting Pandas-Lynx-
104523Butter Knives-Fighting Pandas-
107535Fighting Pandas-Admirals-
108544Roadrunners-Fighting Pandas-
110555Fighting Pandas-Wombats-
112567Broncos-Fighting Pandas-
114577Fighting Pandas-Broncos-
116589Bruins-Fighting Pandas-
119598Fighting Pandas-Butter Knives-
120608Americiens-Fighting Pandas-
122621Fighting Pandas-Lynx-
124632Lynx-Fighting Pandas-
126643Fighting Pandas-Americiens-
128652Marlies-Fighting Pandas-
130657Fighting Pandas-Canucks-
132673Quacken-Fighting Pandas-
133677Fighting Pandas-Tomahawks-
135686Fighting Pandas-Americiens-
136692Fighting Pandas-Barons-
138703Americiens-Fighting Pandas-
141719Fighting Pandas-Firebirds-
143725Wombats-Fighting Pandas-
146743Aces-Fighting Pandas-
147748Fighting Pandas-Bruins-
150765Admirals-Fighting Pandas-
154785Aces-Fighting Pandas-
158804Lynx-Fighting Pandas-
159809Fighting Pandas-Marlies-
162825Wombats-Fighting Pandas-
164834Fighting Pandas-Bruins-
167846Fighting Pandas-Marlies-
168854Fighting Pandas-Firebirds-
169858Ice Bats-Fighting Pandas-
173875Broncos-Fighting Pandas-
177892Ice Bats-Fighting Pandas-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price4020
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
652,304$ 1,490,000$ 1,490,000$ 500,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
1,490,000$ 488,402$ 24 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 121 11,056$ 1,337,776$




Fighting Pandas Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Fighting Pandas Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Fighting Pandas Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Fighting Pandas Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Fighting Pandas Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA