Please rotate your device to landscape mode for a better experience.
Login

Butter Knives
GP: 25 | W: 13 | L: 10 | OTL: 2 | P: 28
GF: 116 | GA: 129 | PP%: 15.87% | PK%: 72.00%
GM : Liam Silva Vail | Morale : 52 | Team Overall : 57
Next Games #301 vs Ice Bats

Game Center
Butter Knives
13-10-2, 28pts
4
FINAL
5 Barracuda
14-11-2, 30pts
Team Stats
SOL1StreakL1
9-4-1Home Record6-7-0
4-6-1Home Record8-4-2
6-2-2Last 10 Games5-5-0
4.64Goals Per Game3.56
5.16Goals Against Per Game3.59
15.87%Power Play Percentage20.00%
72.00%Penalty Kill Percentage77.78%
Bruins
9-12-5, 23pts
4
FINAL
3 Butter Knives
13-10-2, 28pts
Team Stats
SOW1StreakSOL1
3-7-3Home Record9-4-1
6-5-2Home Record4-6-1
3-6-1Last 10 Games6-2-2
3.58Goals Per Game4.64
4.38Goals Against Per Game5.16
22.81%Power Play Percentage15.87%
72.97%Penalty Kill Percentage72.00%
Butter Knives
13-10-2, 28pts
Day 61
Ice Bats
9-12-6, 24pts
Team Stats
SOL1StreakL2
9-4-1Home Record4-8-1
4-6-1Away Record5-4-5
6-2-2Last 10 Games2-5-3
4.64Goals Per Game3.67
5.16Goals Against Per Game3.67
15.87%Power Play Percentage19.05%
72.00%Penalty Kill Percentage86.79%
Admirals
5-20-1, 11pts
Day 62
Butter Knives
13-10-2, 28pts
Team Stats
L1StreakSOL1
2-11-1Home Record9-4-1
3-9-0Away Record4-6-1
3-7-0Last 10 Games6-2-2
3.50Goals Per Game4.64
5.81Goals Against Per Game4.64
17.46%Power Play Percentage15.87%
69.81%Penalty Kill Percentage72.00%
Butter Knives
13-10-2, 28pts
Day 65
Admirals
5-20-1, 11pts
Team Stats
SOL1StreakL1
9-4-1Home Record2-11-1
4-6-1Away Record3-9-0
6-2-2Last 10 Games3-7-0
4.64Goals Per Game3.50
5.16Goals Against Per Game3.50
15.87%Power Play Percentage17.46%
72.00%Penalty Kill Percentage69.81%
Team Leaders

Team Stats
Goals For
116
4.64 GFG
Shots For
1107
44.28 Avg
Power Play Percentage
15.9%
10 GF
Offensive Zone Start
39.5%
Goals Against
129
5.16 GAA
Shots Against
1029
41.16 Avg
Penalty Kill Percentage
72.0%%
21 GA
Defensive Zone Start
39.6%
Team Info

General ManagerLiam Silva Vail
CoachBill Butters
DivisionAtlantic
ConferenceEastern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance0
Season Tickets300


Roster Info

Pro Team19
Farm Team19
Contract Limit38 / 50
Prospects47


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Luke KuninX100.00816573667075866863606270506566056640281500,000$
2Isac LundestromX100.00645592666873896669625078506267056630263500,000$
3Robby FabbriX100.00725877676578666860646667516868056630291500,000$
4Gage Goncalves (R)X100.00715687686572756850656162655961056620242500,000$
5Mark KastelicX100.00887072668267746671625463506464056620264500,000$
6Mathieu JosephX100.007756846666707466646352685267670566202811,000,000$
7Jesse PuljujarviX100.00805883657867596850625959506464056610272500,000$
8Tanner JeannotX100.008669766479687962506058615066650566102812,000,000$
9Ryan LombergX100.00736986666463886850615061506967056600302500,000$
10James MalatestaX100.00543589576850515050505050506161056510222500,000$
11Matthew WoodX100.00504083577550525050505050505155056510203500,000$
12Ryan WintertonX100.00555590576251525050505050505657056510222500,000$
13Albert Johansson (R)X100.00695783625870776450565068556062056610243500,000$
Scratches
1Angus CrookshankX100.00545089576450515050505050506262025510262500,000$
2Rutger McGroarty (R)X100.00565089507356535250505050505357025510213500,000$
3Gabe PerreaultX100.00503589576250535050505050505154025500203500,000$
TEAM AVERAGE100.0068558462696367605557546051616205058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Erik Portillo (R)100.0060606381545050505050506060062560253682,000$
2Sebastian Cossa (R)100.0050605984525050505050725454062540233700,000$
Scratches
1Drew Commesso (R)100.0050615969525050505050505656038530233750,000$
TEAM AVERAGE100.005360607853505050505057575705454
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bill Butters9980808071751USA745500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Albert JohanssonButter Knives (BUF)D242001-01-04SWEYes168 Lbs6 ft0NoNoFree AgentNoNo32025-08-03FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Angus CrookshankButter Knives (BUF)LW261999-10-02CANNo183 Lbs5 ft10NoNoFree AgentNoNo22025-07-24FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Drew CommessoButter Knives (BUF)G232002-07-19USAYes180 Lbs6 ft2NoNoFree AgentNoNo32025-07-31FalseFalsePro & Farm750,000$75,000$50,417$No750,000$750,000$-------750,000$750,000$-------NoNo-------Link / NHL Link
Erik PortilloButter Knives (BUF)G252000-09-03SWEYes218 Lbs6 ft6NoNoFree AgentNoNo32025-07-31FalseFalsePro & Farm682,000$68,200$45,846$No682,000$682,000$-------682,000$682,000$-------NoNo-------Link / NHL Link
Gabe PerreaultButter Knives (BUF)RW202005-05-07CANNo178 Lbs5 ft11NoNoFree AgentNoNo32025-07-31FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Gage GoncalvesButter Knives (BUF)C242001-01-16CANYes184 Lbs6 ft1NoNoFree AgentNoNo22025-08-03FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Isac LundestromButter Knives (BUF)C261999-11-06SWENo191 Lbs6 ft0NoNoFree AgentNoNo32025-07-24FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
James MalatestaButter Knives (BUF)LW222003-05-31CANNo193 Lbs5 ft9NoNoFree AgentNoNo22025-07-24FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Jesse PuljujarviButter Knives (BUF)RW271998-05-07SWENo216 Lbs6 ft4NoNoTrade2024-08-28NoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Luke KuninButter Knives (BUF)C281997-12-04USANo197 Lbs6 ft0NoNoN/ANoNo12024-08-27FalseFalsePro & Farm500,000$50,000$33,611$No---------------------------Link / NHL Link
Mark KastelicButter Knives (BUF)C261999-03-11USANo227 Lbs6 ft4NoNoFree AgentNoNo42025-07-24FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Link / NHL Link
Mathieu JosephButter Knives (BUF)RW281997-02-09CANNo186 Lbs6 ft1NoNoN/ANoNo12024-08-27FalseFalsePro & Farm1,000,000$100,000$67,222$No---------------------------Link / NHL Link
Matthew WoodButter Knives (BUF)RW202005-02-06CANNo205 Lbs6 ft5NoNoFree AgentNoNo32025-08-03FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Robby FabbriButter Knives (BUF)C291996-01-22CANNo185 Lbs5 ft11NoNoN/ANoNo12024-08-27FalseFalsePro & Farm500,000$50,000$33,611$No---------------------------Link / NHL Link
Rutger McGroartyButter Knives (BUF)RW212004-03-30USAYes203 Lbs6 ft1NoNoFree AgentNoNo32025-08-03FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Ryan LombergButter Knives (BUF)LW301994-12-09CANNo184 Lbs5 ft9NoNoFree AgentNoNo22025-07-24FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Ryan WintertonButter Knives (BUF)C222003-09-04CANNo175 Lbs6 ft2NoNoFree AgentNoNo22025-07-24FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Sebastian CossaButter Knives (BUF)G232002-11-21CANYes229 Lbs6 ft6NoNoFree AgentNoNo32025-07-31FalseFalsePro & Farm700,000$70,000$47,056$No700,000$700,000$-------700,000$700,000$-------NoNo-------Link / NHL Link
Tanner JeannotButter Knives (BUF)LW281997-05-29CANNo220 Lbs6 ft2NoNoTrade2024-08-10NoNo1FalseFalsePro & Farm2,000,000$200,000$134,444$No---------------------------Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1924.84196 Lbs6 ft12.32638,526$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
320122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals10001000431000000000001000100043121.00048120048372845434338136827319422500.00%20100.00%041993644.76%41693844.35%22049744.27%513356690187312142
2Americiens20200000916-71010000037-41010000069-300.0009162500483728410234338136827110411951300.00%8450.00%041993644.76%41693844.35%22049744.27%513356690187312142
3Barons11000000532110000005320000000000021.000510150048372843234338136827318621200.00%3166.67%041993644.76%41693844.35%22049744.27%513356690187312142
4Barracuda1000010045-1000000000001000010045-110.50048120048372844234338136827461810255120.00%5260.00%041993644.76%41693844.35%22049744.27%513356690187312142
5Bruins301000111415-1200000119901010000056-130.500142539004837284137343381368271333916619222.22%8362.50%041993644.76%41693844.35%22049744.27%513356690187312142
6Canucks220000001596110000007431100000085341.000153045004837284993433813682770281444000%6183.33%141993644.76%41693844.35%22049744.27%513356690187312142
7Fighting Pandas21100000710-3110000005321010000027-520.5007111800483728467343381368278031123111218.18%6183.33%041993644.76%41693844.35%22049744.27%513356690187312142
8Griffins1010000078-1000000000001010000078-100.0007142100483728454343381368276323231000%000%041993644.76%41693844.35%22049744.27%513356690187312142
9Ice Bats11000000725110000007250000000000021.000714210048372845634338136827326821200.00%3166.67%041993644.76%41693844.35%22049744.27%513356690187312142
10Lynx20200000716-91010000057-21010000029-700.0007132010483728498343381368276618847000%4175.00%041993644.76%41693844.35%22049744.27%513356690187312142
11Marlies733010002734-7522010002125-42110000069-380.57127538000483728427734338136827265765413322418.18%25772.00%041993644.76%41693844.35%22049744.27%513356690187312142
12Roadrunners11000000321000000000001100000032121.0003690048372845134338136827359813200.00%30100.00%041993644.76%41693844.35%22049744.27%513356690187312142
13Wranglers11000000761110000007610000000000021.00071421004837284383433813682767154242150.00%20100.00%041993644.76%41693844.35%22049744.27%513356690187312142
Total25101002111116129-13147401011696631136011004763-16280.5601162223381048372841107343381368271029321165524631015.87%752172.00%141993644.76%41693844.35%22049744.27%513356690187312142
_Since Last GM Reset25101002111116129-13147401011696631136011004763-16280.5601162223381048372841107343381368271029321165524631015.87%752172.00%141993644.76%41693844.35%22049744.27%513356690187312142
_Vs Conference1859020117196-251034010114351-8825010002845-17170.472711322031048372847863433813682772022312135852815.38%561671.43%041993644.76%41693844.35%22049744.27%513356690187312142
_Vs Division1649010116491-271034010114351-8615000002140-19130.406641181821048372846813433813682765420510932345817.78%511668.63%041993644.76%41693844.35%22049744.27%513356690187312142

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2528SOL11162223381107102932116552410
All Games
GPWLOTWOTL SOWSOLGFGA
2510102111116129
Home Games
GPWLOTWOTL SOWSOLGFGA
147410116966
Visitor Games
GPWLOTWOTL SOWSOLGFGA
113611004763
Last 10 Games
WLOTWOTL SOWSOL
521101
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
631015.87%752172.00%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
343381368274837284
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
41993644.76%41693844.35%22049744.27%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
513356690187312142


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
13Marlies2Butter Knives4WBoxScore
416Butter Knives5Bruins6LBoxScore
730Marlies5Butter Knives6WXBoxScore
941Butter Knives4Marlies3WBoxScore
1147Butter Knives3Roadrunners2WBoxScore
1360Marlies4Butter Knives5WBoxScore
1674Butter Knives2Fighting Pandas7LBoxScore
1883Marlies7Butter Knives3LBoxScore
2097Americiens7Butter Knives3LBoxScore
22109Butter Knives8Canucks5WBoxScore
25118Marlies7Butter Knives3LBoxScore
28133Butter Knives6Americiens9LBoxScore
30143Lynx7Butter Knives5LBoxScore
33158Bruins5Butter Knives6WXXBoxScore
34165Butter Knives2Lynx9LBoxScore
38179Butter Knives4Admirals3WXBoxScore
39186Canucks4Butter Knives7WBoxScore
43201Fighting Pandas3Butter Knives5WBoxScore
47221Barons3Butter Knives5WBoxScore
49237Butter Knives7Griffins8LBoxScore
50241Butter Knives2Marlies6LBoxScore
51248Wranglers6Butter Knives7WBoxScore
54265Ice Bats2Butter Knives7WBoxScore
57279Butter Knives4Barracuda5LXBoxScore
58286Bruins4Butter Knives3LXXBoxScore
61301Butter Knives-Ice Bats-
62310Admirals-Butter Knives-
65320Butter Knives-Admirals-
67332Quacken-Butter Knives-
69343Butter Knives-Roadrunners-
71353Tomahawks-Butter Knives-
73364Butter Knives-Roadrunners-
76375Butter Knives-Wombats-
77382Ice Bats-Butter Knives-
79397Lynx-Butter Knives-
81407Butter Knives-Aces-
84420Lynx-Butter Knives-
86435Butter Knives-Canucks-
88442Fighting Pandas-Butter Knives-
90451Butter Knives-Fighting Pandas-
92459Butter Knives-Quacken-
94467Lions-Butter Knives-
98487Aces-Butter Knives-
99494Butter Knives-Bruins-
102510Firebirds-Butter Knives-
104523Butter Knives-Fighting Pandas-
106531Admirals-Butter Knives-
108545Butter Knives-Canucks-
109552Butter Knives-Americiens-
110556Barracuda-Butter Knives-
113575Bruins-Butter Knives-
115584Butter Knives-Tomahawks-
119598Fighting Pandas-Butter Knives-
121613Butter Knives-Marlies-
122619Griffins-Butter Knives-
125638Butter Knives-Nordiks-
126642Marlies-Butter Knives-
129655Butter Knives-Lions-
131661Butter Knives-Wombats-
132669Roadrunners-Butter Knives-
134682Butter Knives-Bruins-
135690Marlies-Butter Knives-
139706Firebirds-Butter Knives-
143728Roadrunners-Butter Knives-
145733Butter Knives-Wranglers-
147745Butter Knives-Firebirds-
148754Broncos-Butter Knives-
151770Butter Knives-Lions-
152774Wombats-Butter Knives-
153779Butter Knives-Lynx-
156795Butter Knives-Lynx-
157800Americiens-Butter Knives-
160818Americiens-Butter Knives-
161821Butter Knives-Wranglers-
165839Butter Knives-Broncos-
166840Wombats-Butter Knives-
167843Butter Knives-Americiens-
170862Nordiks-Butter Knives-
171866Butter Knives-Barons-
174877Butter Knives-Firebirds-
176890Broncos-Butter Knives-
178901Butter Knives-Broncos-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
561,562$ 1,213,200$ 1,213,200$ 500,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
1,213,200$ 397,660$ 19 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 121 9,518$ 1,151,678$




Butter Knives Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Butter Knives Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Butter Knives Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Butter Knives Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Butter Knives Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA