Please rotate your device to landscape mode for a better experience.
Login

Admirals
GP: 26 | W: 5 | L: 20 | OTL: 1 | P: 11
GF: 91 | GA: 151 | PP%: 17.46% | PK%: 69.81%
GM : Keith | Morale : 31 | Team Overall : 57
Next Games #303 vs Griffins

Game Center
Admirals
5-20-1, 11pts
4
FINAL
3 Fighting Pandas
14-9-4, 32pts
Team Stats
L1StreakOTL1
2-11-1Home Record6-4-4
3-9-0Home Record8-5-0
3-7-0Last 10 Games4-3-3
3.50Goals Per Game4.33
5.81Goals Against Per Game3.78
17.46%Power Play Percentage31.37%
69.81%Penalty Kill Percentage83.13%
Quacken
15-10-1, 31pts
7
FINAL
2 Admirals
5-20-1, 11pts
Team Stats
W2StreakL1
10-3-0Home Record2-11-1
5-7-1Home Record3-9-0
7-3-0Last 10 Games3-7-0
3.69Goals Per Game3.50
3.15Goals Against Per Game5.81
30.19%Power Play Percentage17.46%
85.00%Penalty Kill Percentage69.81%
Admirals
5-20-1, 11pts
Day 61
Griffins
14-13-0, 28pts
Team Stats
L1StreakW1
2-11-1Home Record7-6-0
3-9-0Away Record7-7-0
3-7-0Last 10 Games6-4-0
3.50Goals Per Game5.63
5.81Goals Against Per Game5.63
17.46%Power Play Percentage18.75%
69.81%Penalty Kill Percentage68.75%
Admirals
5-20-1, 11pts
Day 62
Butter Knives
13-10-2, 28pts
Team Stats
L1StreakSOL1
2-11-1Home Record9-4-1
3-9-0Away Record4-6-1
3-7-0Last 10 Games6-2-2
3.50Goals Per Game4.64
5.81Goals Against Per Game4.64
17.46%Power Play Percentage15.87%
69.81%Penalty Kill Percentage72.00%
Butter Knives
13-10-2, 28pts
Day 65
Admirals
5-20-1, 11pts
Team Stats
SOL1StreakL1
9-4-1Home Record2-11-1
4-6-1Away Record3-9-0
6-2-2Last 10 Games3-7-0
4.64Goals Per Game3.50
5.16Goals Against Per Game3.50
15.87%Power Play Percentage17.46%
72.00%Penalty Kill Percentage69.81%
Team Leaders
Brett BerardGoals
Brett Berard
8
Jonny BrodzinskiAssists
Jonny Brodzinski
12
Jonny BrodzinskiPoints
Jonny Brodzinski
18
Max SassonPlus/Minus
Max Sasson
-5
Dennis HildebyWins
Dennis Hildeby
4
Nikke KokkoSave Percentage
Nikke Kokko
0.881

Team Stats
Goals For
91
3.50 GFG
Shots For
984
37.85 Avg
Power Play Percentage
17.5%
11 GF
Offensive Zone Start
40.4%
Goals Against
151
5.81 GAA
Shots Against
981
37.73 Avg
Penalty Kill Percentage
69.8%%
16 GA
Defensive Zone Start
37.0%
Team Info

General ManagerKeith
CoachJacques Martin
DivisionMetropolitan
ConferenceEastern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance0
Season Tickets300


Roster Info

Pro Team23
Farm Team20
Contract Limit43 / 50
Prospects8


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Frank Nazar (R)X100.00635686706878716862676966645559047640212500,000$
2Alexey ToropchenkoX100.00846186668171906950645070506365046640262500,000$
3Jonny BrodzinskiX100.00645595687569687362637061517573046640322500,000$
4Oskar Bäck (R)X100.00605593647369845966635073506265045610252600,000$
5Brett Berard (R)X100.00705587646065606650596458515859046590233500,000$
6Max SassonX100.00615099646465576558605659506261045580251500,000$
7Carl GrundstromX100.00845880637165715850605057506563044580282500,000$
8John HaydenX100.00736184588057545568525057507168056560302500,000$
9Justin Robidas (R)X100.00503589576150515550505450515664024520223500,000$
10Nikita GrebenkinX100.00595785577550515050505049506261031510222500,000$
11Danil GushchinX100.00505775505653535350505049506362031500233500,000$
12Joel HanleyX100.00696484626674726650595175558077045650341500,000$
13Henry ThrunX100.00676783627572766750615166556162044630241500,000$
14Ryan SheaX100.00625984627968646250545071556969045620282500,000$
15Isaiah George (R)X100.00595790607067616450565165555558044590213500,000$
16Ville Ottavainen (R)X100.00553594577650525050605050555969044540233500,000$
Scratches
1Devin KaplanX100.00503589577150515050505050505355024510213500,000$
2Jack FinleyX100.00503589578050505050505050505959024510232700,000$
3Alex Barré-BouletX100.00504353576250515050505050506564024510282500,000$
4Nikita PrishchepovX100.00525089576950505050505050505355024510212500,000$
5Isak RosenX100.00505089576350514950505049505657032500222500,000$
TEAM AVERAGE100.0061528660706161595356535852626303957
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Dennis Hildeby (R)100.0050636083514646464650505958010530243500,000$
2Nikke Kokko (R)100.0050605971525350505050505252041530213500,000$
Scratches
TEAM AVERAGE100.005062607752504848485050565502653
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jacques Martin5050505050501CAN715500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jonny BrodzinskiAdmirals (NYI)C1761218-13004317329408.22%431118.3021314340001110056.70%38800001.1600000011
2Cole SillingerNew York IslandersC/LW1510717-1220182676234613.16%436824.592028320110231041.67%2400010.9200000222
3Joel HanleyAdmirals (NYI)D1731114-1412039232492312.50%3043825.79123631000020000%000000.6400000410
4Alexey ToropchenkoAdmirals (NYI)RW1731114-810029233512338.57%432218.99022635000030061.90%2100000.8700000011
5Brett BerardAdmirals (NYI)LW178513-1400151646112617.39%433219.590228360003171040.91%2200000.7800000111
6Frank NazarAdmirals (NYI)C174812-6008364412369.09%434120.091124361011291054.93%42600000.7000000101
7Henry ThrunAdmirals (NYI)D1721012-196036211831211.11%2842224.84112831000019000%000000.5700000001
8Carl GrundstromAdmirals (NYI)RW174711-1410038102692115.38%430918.18022435000000064.71%1700000.7100000012
9Isaiah GeorgeAdmirals (NYI)D173811-214013192821410.71%2838122.451011636000019000%000000.5800000000
10Oskar BäckAdmirals (NYI)C173710-15201643333339.09%530618.02022350000141058.88%30400000.6500000100
11Ryan SheaAdmirals (NYI)D17189-12801321195115.26%2840924.09011833000020000%000000.4400000010
12Max SassonAdmirals (NYI)C17426-52059156826.67%31146.7110111000010050.98%10200001.0500000001
13Nikita GrebenkinAdmirals (NYI)RW17134-162017615796.67%126515.6000002000000047.06%1700000.3000000000
14Ville OttavainenAdmirals (NYI)D17123-7208721250.00%1628716.8900019000011000%000000.2100000100
15Erik HaulaNew York IslandersLW2202-24027131315.38%74723.93000020000300100.00%200000.8400000000
16Danil GushchinAdmirals (NYI)LW17112-1500129144127.14%427416.1200001000050033.33%1500000.1500000000
17Isak RosenAdmirals (NYI)RW17000-600326330%11036.0600000000000050.00%20000000000000
Team Total or Average27256102158-19964027630948714033211.50%175503518.51914238736611252034055.52%134000010.630000010810
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Dennis HildebyAdmirals (NYI)1741110.8175.51751006937800100161010
2Nikke KokkoAdmirals (NYI)70100.8815.21242002117700000015000
3Spencer MartinNew York Islanders10000.76510.0024004170000011000
Team Total or Average2541210.8365.541018009457200101717010


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Alex Barré-BouletAdmirals (NYI)C281997-05-21CANNo178 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Alexey ToropchenkoAdmirals (NYI)RW261999-06-25RUSNo222 Lbs6 ft6NoNoTrade2025-07-11NoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Brett BerardAdmirals (NYI)LW232002-09-09USAYes175 Lbs5 ft9NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Carl GrundstromAdmirals (NYI)RW281997-12-01SWENo200 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Danil GushchinAdmirals (NYI)LW232002-02-06RUSNo165 Lbs5 ft8NoNoTrade2024-12-31NoNo32024-08-13FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Dennis HildebyAdmirals (NYI)G242001-08-19SWEYes224 Lbs6 ft7NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Devin KaplanAdmirals (NYI)RW212004-01-10USANo199 Lbs6 ft2NoNoFree AgentNoNo32025-08-09FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Frank NazarAdmirals (NYI)C212004-01-14USAYes190 Lbs5 ft10NoNoTrade2024-12-31NoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Henry ThrunAdmirals (NYI)D242001-03-12USANo210 Lbs6 ft2NoNoTrade2024-12-31NoNo1FalseFalsePro & Farm500,000$50,000$33,611$No---------------------------Link / NHL Link
Isaiah GeorgeAdmirals (NYI)D212004-02-15CANYes196 Lbs6 ft1NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Isak RosenAdmirals (NYI)RW222003-03-15SWENo180 Lbs6 ft0NoNoTrade2025-06-22NoNo2FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Jack FinleyAdmirals (NYI)C232002-09-02USANo220 Lbs6 ft6NoNoFree AgentNoNo22025-08-10FalseFalsePro & Farm700,000$70,000$47,056$No700,000$--------700,000$--------No--------Link / NHL Link
Joel HanleyAdmirals (NYI)D341991-06-08CANNo186 Lbs5 ft11NoNoAssign ManuallyNoNo12025-04-13FalseFalsePro & Farm500,000$0$0$No---------------------------Link / NHL Link
John HaydenAdmirals (NYI)C301995-02-14USANo223 Lbs6 ft3NoNoAssign ManuallyNoNo22025-06-14FalseFalsePro & Farm500,000$0$0$No500,000$-----------------No--------Link / NHL Link
Jonny BrodzinskiAdmirals (NYI)C321993-06-19USANo211 Lbs6 ft0NoNoAssign ManuallyNoNo22025-03-28FalseFalsePro & Farm500,000$0$0$No500,000$-----------------No--------Link / NHL Link
Justin RobidasAdmirals (NYI)C222003-03-13USAYes176 Lbs5 ft8NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Max SassonAdmirals (NYI)C252000-09-05USANo181 Lbs6 ft1NoNoFree AgentNoNo12025-08-19FalseFalsePro & Farm500,000$50,000$33,611$No---------------------------Link / NHL Link
Nikita GrebenkinAdmirals (NYI)RW222003-05-02RUSNo210 Lbs6 ft2NoNoFree AgentNoNo22025-08-07FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Nikita PrishchepovAdmirals (NYI)C212004-02-20RUSNo194 Lbs6 ft1NoNoFree AgentNoNo22025-08-07FalseFalsePro & Farm500,000$50,000$33,611$No500,000$--------500,000$--------No--------Link / NHL Link
Nikke KokkoAdmirals (NYI)G212004-03-14FINYes184 Lbs6 ft3NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Oskar BäckAdmirals (NYI)C252000-03-12SWEYes202 Lbs6 ft4NoNoFree AgentNoNo22025-08-07FalseFalsePro & Farm600,000$60,000$40,333$No600,000$--------600,000$--------No--------Link
Ryan SheaAdmirals (NYI)D281997-02-11USANo220 Lbs6 ft1NoNoAssign ManuallyNoNo22025-06-14FalseFalsePro & Farm500,000$0$0$No500,000$-----------------No--------Link / NHL Link
Ville OttavainenAdmirals (NYI)D232002-08-12FINYes210 Lbs6 ft5NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$33,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2324.65198 Lbs6 ft12.22513,043$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Frank NazarAlexey Toropchenko40122
2Brett BerardJonny BrodzinskiCarl Grundstrom30122
3Danil GushchinOskar BäckNikita Grebenkin30122
4Max Sasson0122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyRyan Shea40122
2Henry ThrunIsaiah George30122
3Ville OttavainenJoel Hanley20122
4Ryan SheaHenry Thrun10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Frank NazarAlexey Toropchenko60122
2Brett BerardJonny BrodzinskiCarl Grundstrom40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyRyan Shea60122
2Henry ThrunIsaiah George40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Frank Nazar60122
2Jonny BrodzinskiBrett Berard40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyRyan Shea60122
2Henry ThrunIsaiah George40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Frank Nazar60122Joel HanleyRyan Shea60122
2Jonny Brodzinski40122Henry ThrunIsaiah George40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Frank Nazar60122
2Jonny BrodzinskiBrett Berard40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyRyan Shea60122
2Henry ThrunIsaiah George40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Frank NazarAlexey ToropchenkoJoel HanleyRyan Shea
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Frank NazarAlexey ToropchenkoJoel HanleyRyan Shea
Extra Forwards
Normal PowerPlayPenalty Kill
Oskar Bäck, Brett Berard, Carl GrundstromOskar Bäck, Brett BerardOskar Bäck
Extra Defensemen
Normal PowerPlayPenalty Kill
Henry Thrun, Isaiah George, Ville OttavainenHenry ThrunHenry Thrun, Isaiah George
Penalty Shots
, Alexey Toropchenko, Frank Nazar, Jonny Brodzinski, Oskar Bäck
Goalie
#1 : Dennis Hildeby, #2 : Nikke Kokko


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barons2110000049-51010000017-61100000032120.50048120034342304231334133005612026200.00%000%045793348.98%41385348.42%26952251.53%626441602181330165
2Broncos1010000023-11010000023-10000000000000.0002350034342302831334133002366113133.33%3166.67%045793348.98%41385348.42%26952251.53%626441602181330165
3Bruins1010000024-2000000000001010000024-200.0002460034342302931334133002916815100.00%30100.00%045793348.98%41385348.42%26952251.53%626441602181330165
4Butter Knives1000010034-11000010034-10000000000010.50033600343423031313341330054121018200.00%50100.00%145793348.98%41385348.42%26952251.53%626441602181330165
5Fighting Pandas11000000431000000000001100000043121.0004812003434230253133413300226015500.00%000%045793348.98%41385348.42%26952251.53%626441602181330165
6Firebirds312000001724-7211000001316-31010000048-420.33317324900343423013331334133001234112687228.57%6266.67%045793348.98%41385348.42%26952251.53%626441602181330165
7Griffins303000001522-7303000001522-70000000000000.00015294410343423016831334133001634816755360.00%8275.00%145793348.98%41385348.42%26952251.53%626441602181330165
8Lynx20200000713-61010000056-11010000027-500.000713200034342308931334133008329841400.00%4325.00%045793348.98%41385348.42%26952251.53%626441602181330165
9Marlies11000000431110000004310000000000021.000481200343423027313341330022136127228.57%20100.00%045793348.98%41385348.42%26952251.53%626441602181330165
10Nordiks1010000028-6000000000001010000028-600.00023500343423022313341330045202193133.33%10100.00%045793348.98%41385348.42%26952251.53%626441602181330165
11Quacken20200000313-101010000027-51010000016-500.00036900343423046313341330063181234100.00%6433.33%045793348.98%41385348.42%26952251.53%626441602181330165
12Roadrunners30300000813-51010000035-22020000058-300.00081422003434230983133413300892914479222.22%7185.71%045793348.98%41385348.42%26952251.53%626441602181330165
13Tomahawks1010000037-41010000037-40000000000000.0003690034342304931334133004712023300.00%000%045793348.98%41385348.42%26952251.53%626441602181330165
14Wombats312000001216-41010000036-321100000910-120.3331223350034342301563133413300111241473800.00%7357.14%045793348.98%41385348.42%26952251.53%626441602181330165
15Wranglers1010000059-4000000000001010000059-400.0005914003434230413133413300518219300.00%10100.00%045793348.98%41385348.42%26952251.53%626441602181330165
Total265200010091151-6014211001005486-321239000003765-28110.212911692601034342309843133413300981294110496631117.46%531669.81%245793348.98%41385348.42%26952251.53%626441602181330165
_Since Last GM Reset265200010091151-6014211001005486-321239000003765-28110.212911692601034342309843133413300981294110496631117.46%531669.81%245793348.98%41385348.42%26952251.53%626441602181330165
_Vs Conference16411001005983-24825001003343-10826000002640-1490.2815910816700343423061631334133005561767830046715.22%371072.97%145793348.98%41385348.42%26952251.53%626441602181330165
_Vs Division1028000004665-19714000003347-14314000001318-540.200468713310343423048531334133004201194822723626.09%24866.67%145793348.98%41385348.42%26952251.53%626441602181330165

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2611L19116926098498129411049610
All Games
GPWLOTWOTL SOWSOLGFGA
26520010091151
Home Games
GPWLOTWOTL SOWSOLGFGA
1421101005486
Visitor Games
GPWLOTWOTL SOWSOLGFGA
123900003765
Last 10 Games
WLOTWOTL SOWSOL
370000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
631117.46%531669.81%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
31334133003434230
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
45793348.98%41385348.42%26952251.53%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
626441602181330165


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
312Lynx6Admirals5LBoxScore
625Griffins6Admirals4LBoxScore
835Admirals5Wombats4WBoxScore
1044Admirals2Lynx7LBoxScore
1255Griffins8Admirals5LBoxScore
1467Wombats6Admirals3LBoxScore
1675Admirals4Firebirds8LBoxScore
1782Admirals4Wombats6LBoxScore
2099Roadrunners5Admirals3LBoxScore
21103Admirals2Bruins4LBoxScore
24116Griffins8Admirals6LBoxScore
26127Admirals2Roadrunners3LBoxScore
29139Firebirds7Admirals8WBoxScore
33159Broncos3Admirals2LBoxScore
35170Admirals3Roadrunners5LBoxScore
38179Butter Knives4Admirals3LXBoxScore
41195Admirals2Nordiks8LBoxScore
43204Firebirds9Admirals5LBoxScore
45209Admirals1Quacken6LBoxScore
47223Tomahawks7Admirals3LBoxScore
49233Admirals5Wranglers9LBoxScore
50244Barons7Admirals1LBoxScore
52254Admirals3Barons2WBoxScore
54268Marlies3Admirals4WBoxScore
56278Admirals4Fighting Pandas3WBoxScore
58289Quacken7Admirals2LBoxScore
61303Admirals-Griffins-
62310Admirals-Butter Knives-
65320Butter Knives-Admirals-
67334Griffins-Admirals-
69340Admirals-Ice Bats-
71354Admirals-Americiens-
73363Griffins-Admirals-
75373Admirals-Marlies-
76378Admirals-Broncos-
78389Broncos-Admirals-
81403Admirals-Bruins-
82413Broncos-Admirals-
84425Roadrunners-Admirals-
89445Ice Bats-Admirals-
93464Admirals-Americiens-
94468Ice Bats-Admirals-
98485Admirals-Roadrunners-
99492Fighting Pandas-Admirals-
102509Lions-Admirals-
104518Admirals-Tomahawks-
106531Admirals-Butter Knives-
107535Fighting Pandas-Admirals-
110553Aces-Admirals-
112565Admirals-Firebirds-
113576Barracuda-Admirals-
116586Admirals-Marlies-
119597Admirals-Firebirds-
120604Canucks-Admirals-
122620Wranglers-Admirals-
124628Admirals-Tomahawks-
126641Roadrunners-Admirals-
131662Firebirds-Admirals-
133679Admirals-Canucks-
134684Americiens-Admirals-
137696Admirals-Canucks-
139705Admirals-Lions-
140711Bruins-Admirals-
143727Lynx-Admirals-
145736Admirals-Broncos-
147744Admirals-Barracuda-
148753Americiens-Admirals-
150765Admirals-Fighting Pandas-
152776Lynx-Admirals-
155789Admirals-Bruins-
156794Admirals-Wombats-
157799Admirals-Broncos-
158803Marlies-Admirals-
161820Admirals-Aces-
162824Nordiks-Admirals-
164837Admirals-Wombats-
166842Admirals-Aces-
167847Admirals-Lynx-
169855Wombats-Admirals-
172871Admirals-Lynx-
174879Wombats-Admirals-
178895Bruins-Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
567,883$ 1,180,000$ 980,000$ 500,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
980,000$ 338,432$ 23 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 121 9,333$ 1,129,293$




Admirals Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Admirals Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Admirals Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Admirals Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Admirals Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA